Supercomputer dramatically accelerates rapid genome analysis

February 19, 2014
Beagle, a Cray XE6 supercomputer at Argonne National Laboratory, supports computation, simulation and data analysis for the biomedical research community. Credit: Argonne National Laboratory

Although the time and cost of sequencing an entire human genome has plummeted, analyzing the resulting three billion base pairs of genetic information from a single genome can take many months.

In the journal Bioinformatics, however, a University of Chicago-based team—working with Beagle, one of the world's fastest supercomputers devoted to life sciences—reports that genome analysis can be radically accelerated. This computer, based at Argonne National Laboratory, is able to analyze 240 full genomes in about two days.

"This is a resource that can change patient management and, over time, add depth to our understanding of the genetic causes of risk and disease," said study author Elizabeth McNally, MD, PhD, the A. J. Carlson Professor of Medicine and Human Genetics and director of the Cardiovascular Genetics clinic at the University of Chicago Medicine.

"The can process many genomes simultaneously rather than one at a time," said first author Megan Puckelwartz, a graduate student in McNally's laboratory. "It converts whole , which has primarily been used as a research tool, into something that is immediately valuable for patient care."

Because the genome is so vast, those involved in clinical genetics have turned to exome sequencing, which focuses on the two percent or less of the genome that codes for proteins. This approach is often useful. An estimated 85 percent of disease-causing mutations are located in coding regions. But the rest, about 15 percent of clinically significant mutations, come from non-coding regions, once referred to as "junk DNA" but now known to serve important functions. If not for the tremendous data-processing challenges of analysis, would be the method of choice.

To test the system, McNally's team used raw sequencing data from 61 human genomes and analyzed that data on Beagle. They used publicly available software packages and one quarter of the computer's total capacity. They found that shifting to the supercomputer environment improved accuracy and dramatically accelerated speed.

"Improving analysis through both speed and accuracy reduces the price per genome," McNally said. "With this approach, the price for analyzing an entire genome is less than the cost of the looking at just a fraction of genome. New technology promises to bring the costs of sequencing down to around $1,000 per genome. Our goal is get the cost of analysis down into that range."

"This work vividly demonstrates the benefits of dedicating a powerful supercomputer resource to biomedical research," said co-author Ian Foster, director of the Computation Institute and Arthur Holly Compton Distinguished Service Professor of Computer Science. "The methods developed here will be instrumental in relieving the data analysis bottleneck that researchers face as genetic sequencing grows cheaper and faster."

The finding has immediate medical applications. McNally's Cardiovascular Genetics clinic, for example, relies on rigorous interrogation of the genes from an initial patient as well as multiple family members to understand, treat and prevent disease. More than 50 genes can contribute to cardiomyopathy. Other genes can trigger heart failure, rhythm disorders or vascular problems.

"We start genetic testing with the patient," she said, "but when we find a significant mutation we have to think about testing the whole family to identify individuals at risk."

The range of testable mutations has radically expanded. "In the early days we would test one to three genes," she said. "In 2007, we did our first five-gene panel. Now we order 50 to 70 genes at a time, which usually gets us an answer. At that point, it can be more useful and less expensive to sequence the whole ."

The information from these genomes combined with careful attention to patient and family histories "adds to our knowledge about these inherited disorders," McNally said. "It can refine the classification of these disorders," she said. "By paying close attention to family members with genes that place then at increased risk, but who do not yet show signs of disease, we can investigate early phases of a disorder. In this setting, each patient is a big-data problem."

Beagle, a Cray XE6 supercomputer housed in the Theory and Computing Sciences (TCS) building at Argonne National Laboratory, supports computation, simulation and data analysis for the biomedical research community. It is available for use by University of Chicago researchers, their collaborators and "other meritorious investigators." It was named after the HMS Beagle, the ship that carried Charles Darwin on his famous scientific voyage in 1831.

Explore further: Research team establishes benchmark set of human genotypes for sequencing

Related Stories

Research team establishes benchmark set of human genotypes for sequencing

February 18, 2014
Led by biomedical engineer Justin Zook of the National Institute of Standards and Technology, a team of scientists from Harvard University and the Virginia Bioinformatics Institute of Virginia Tech has presented new methods ...

Cheap genome tests to predict future illness? Don't hold your breath

January 20, 2014
Sydney's Garvan Institute is this week promoting its acquisition of an Illumina machine which it says can sequence the whole human genome for $1,000. The institute hopes genomic sequencing will become widely available in ...

Baylor, DNAnexus, Amazon Web Services collaboration enables largest-ever cloud-based analysis of genomic data

October 25, 2013
With their participation in the completion of the largest cloud-based analysis of genome sequence data, researchers from the Baylor College of Medicine Human Genome Sequencing Center are helping to usher genomic scientists ...

New method developed for ranking disease-causal mutations within whole genome sequences

February 7, 2014
Researchers from the University of Washington and the HudsonAlpha Institute for Biotechnology have developed a new method for organizing and prioritizing genetic data. The Combined Annotation–Dependent Depletion, or CADD, ...

Whole genome or exome sequencing: An individual insight

June 27, 2013
Focusing on parts rather than the whole, when it comes to genome sequencing, might be extremely useful, finds research in BioMed Central's open access journal Genome Medicine. The research compares several sequencing technologies ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.