New method developed for ranking disease-causal mutations within whole genome sequences

February 7, 2014, HudsonAlpha Institute for Biotechnology

Researchers from the University of Washington and the HudsonAlpha Institute for Biotechnology have developed a new method for organizing and prioritizing genetic data. The Combined Annotation–Dependent Depletion, or CADD, method will assist scientists in their search for disease-causing mutation events in human genomes.

The new method is the subject of a paper titled "A general framework for estimating the relative pathogenicity of human genetic variants," published in Nature Genetics.

Current methods of organizing look at just one or a few factors and use only a small subset of the information available. For example, the Encyclopedia Of DNA Elements, or ENCODE, catalogs various types of functional elements in human genomes, while sequence conservation looks for similar or identical sequences that have survived across different species through hundreds of millions of years of evolution. CADD brings all of these data together, and more, into one score in order to provide a ranking that helps researchers discern which variants may be linked to disease and which ones may not.

"CADD will substantially improve our ability to identify disease-causal mutations, will continue to get better as genomic databases grow, and is an important analytical advance needed to better exploit the information content of whole-genome sequences in both clinical and research settings," said Gregory M. Cooper, Ph.D., faculty investigator at HudsonAlpha and one of the collaborators on CADD.

The goal in developing the new approach was to take the overwhelming amount of data available and distill it down into a single score that can be more easily evaluated by a researcher or clinician. To accomplish that, CADD compares and contrasts the properties of 15 million genetic variants separating humans from chimpanzees with 15 million simulated variants. Variants observed in humans have survived natural selection, which tends to remove harmful, disease-causing variants, while simulated variants are not exposed to selection. Thus, by comparing observed to simulated variants, CADD is able to identify those properties that make a variant harmful or disease-causing. C scores have been pre-computed for all 8.6 billion possible single nucleotide variants and are freely available for researchers.

"We didn't know what to expect," Cooper said, "but we were pleasantly surprised that CADD was able not only to be applicable to mutations everywhere in the genome but in fact do a substantially better job in nearly every test that we performed than other metrics."

The CADD method is unique from other algorithms in that it assigns scores to mutations anywhere in human genomes, not just the less-than two percent that encode proteins (the "exome"). This unique attribute will be crucial as whole-genome sequencing becomes routine in both clinical and research settings.

Explore further: Sieving through 'junk' DNA reveals cancer-causing genetic mutations

More information: www.nature.com/ng/journal/vaop … nt/full/ng.2892.html

Related Stories

Sieving through 'junk' DNA reveals cancer-causing genetic mutations

October 3, 2013
Researchers can now identify DNA regions within non-coding DNA, the major part of the genome that is not translated into a protein, where mutations can cause diseases such as cancer.

Why is type 2 diabetes an increasing problem?

January 9, 2014
Contrary to a common belief, researchers have shown that genetic regions associated with increased risk of type 2 diabetes were unlikely to have been beneficial to people at stages through human evolution.

Researchers produce a catalog of the deleterious and disease-causing genetic variants in healthy people

December 6, 2012
Researchers at Cambridge and Cardiff have found that, on average, a normal healthy person carries approximately 400 potentially damaging DNA variants and two variants known to be associated directly with disease traits. They ...

Research sheds new light on heritability of disease

January 16, 2014
A group of international researchers, led by a research fellow in the Harvard Medical School-affiliated Institute for Aging Research at Hebrew SeniorLife, published a paper today in Cell describing a study aimed at better ...

New genetic analysis method holds promise for understanding causes of disease

December 17, 2013
(Medical Xpress)—University of Michigan School of Public Health researchers have developed a new method for identifying rare gene variants, which scientists now believe are more informative for human disease studies than ...

New approach for efficient analysis of emerging genetic data

September 6, 2012
(Medical Xpress)—With the ability to sequence human genes comes an onslaught of raw material about the genetic characteristics that distinguish us, and wading through these reserves of data poses a major challenge for life ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.