Tumors 'light up' with new, unique imaging system using scorpion venom protein and a laser

February 25, 2014

Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery have developed a unique, compact, relatively inexpensive imaging device to "light up" malignant brain tumors and other cancers.

The experimental system consists of a special camera designed and developed at Cedars-Sinai and a new, targeted imaging agent based on a synthetic version of a small protein – a peptide – found in the venom of the deathstalker scorpion. The imaging agent, Tumor Paint BLZ-100, a product of Blaze Bioscience Inc., homes to brain cells. When stimulated by a laser in the near-infrared part of the spectrum, it emits a glow that is invisible to the eye but can be captured by the camera.

Results of animal studies, published as the feature article in the February issue of Neurosurgical Focus, provide the basis for the launch of human clinical trials. The system would be used during surgery to determine if it enables neurosurgeons to remove more tumor and spare more healthy tissue.

Malignant brain tumors called gliomas are among the most lethal tumors, with patients typically surviving about 15 months after diagnosis. "We know that survival statistics increase if we can remove all of a tumor, but it is impossible to visualize with the naked eye where tumor stops and brain tissue starts, and current imaging systems don't provide a definitive view," said Keith Black, MD, chair and professor of the Department of Neurosurgery, the article's senior author.

"Gliomas have tentacles that invade normal tissue and present big challenges for neurosurgeons: Taking out too much normal brain tissue can have catastrophic consequences, but stopping short of total removal gives remaining cancer cells a head start on growing back. That's why we have worked to develop imaging systems that will provide a clear distinction – during surgery – between diseased tissue and normal brain," said Black, director of the Maxine Dunitz Neurosurgical Institute, director of the Johnnie L. Cochran, Jr. Brain Tumor Center and the Ruth and Lawrence Harvey Chair in Neuroscience.

In studies in laboratory mice with implanted human , the new device clearly delineated tumor tissue from normal . Also, with near-infrared light's ability to penetrate deep into the tissue, the system identified tumors that had migrated away from the main tumor and would have evaded detection.

Pramod Butte, MBBS, PhD, research scientist and assistant professor in the Department of Neurosurgery, the article's first author, said the tumor-imaging process consists of two parts: deploying a fluorescent "dye" that sticks only to cancer cells, and using a laser and a special camera to make an invisible image visible.

To get the dye to the tumor, it is linked to a peptide called chlorotoxin, which, contrary to its name, is not toxic. It completely ignores normal tissue but seeks out and binds to a variety of malignant tumor cells. It first was derived from the venom of the yellow Israeli scorpion, also called the deathstalker. Article co-author Adam Mamelak, MD, professor of neurosurgery and director of functional neurosurgery, has studied the synthetic version of chlorotoxin and its tumor-targeting properties for more than a decade.

In this study, chlorotoxin was bonded to a molecule, indocyanine green, a near-infrared dye, a version of which already is approved by the Food and Drug Administration. The chlorotoxin-indocyanine green combination – Tumor Paint BLZ-100 – emits a glow when stimulated by near-infrared light.

"Injected intravenously, the chlorotoxin seeks out the brain tumor, carrying with it indocyanine green, which has been used in a variety of medical imaging applications. When we shine a near-infrared laser on the tissue, the tumor glows. But the glow emitted by the tumor is invisible to the human eye," said Butte, whose MBBS is India's equivalent of an MD. The camera device, designed in Butte's lab, solves this problem by capturing two images and combining them on a high-definition monitor.

"Other experimental systems we have seen – which use different tumor-targeting methods – are larger and bulkier because they consist of two cameras," Butte said. "Our single-camera device takes both near-infrared and white light images simultaneously. This is achieved by alternately strobing the laser and normal white lights at very high speeds. The eye just sees normal light, but the camera is capturing white light once, near-infrared light next, over and over. We then superimpose the two HD images. The image from the laser shows the tumor, and the image produced from white light shows the visible 'landscape' so we can see where the tumor is in context to what we actually can see."

The prototype is compact, but the authors said they are working to make the next generations even smaller, lighter and portable so the device will require very little space in operating room, allowing the neurosurgeon to focus on the operating microscope and give little attention on the imaging system. "We hope that eventually the camera can be transported in a small bag, but we are not sacrificing image quality for portability," Butte said. "In fact, most systems that use two cameras lose a lot of light. But because of the special filters we use and the way we arrange them, we lose very little light. And from what we have seen and tested, our device provides about 10 times greater sensitivity and contrast than others."

In an editorial accompanying the journal article, David W. Roberts, MD, from the Section of Neurosurgery at the Geisel School of Medicine at Dartmouth College, said the Cedars-Sinai "paper presents a newer direction in which fluorescence-guided surgery may well be headed." He noted that the researchers overcame one of the limitations of near-infrared technology – that it is outside of the visible portion of the spectrum. "In this regard, Butte and colleagues have contributed to the field with their implementation of an optical system that is sensitive and efficient. They have characterized well its performance in phantom and animal models, demonstrating proof-of-concept and feasibility."

Explore further: Galaxy-exploring camera in the operating room

More information: Neurosurgical Focus, "Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors."

Related Stories

Galaxy-exploring camera in the operating room

July 12, 2012
Neurosurgeons and researchers at Cedars-Sinai Medical Center and the Maxine Dunitz Neurosurgical Institute are adapting an ultraviolet camera to possibly bring planet-exploring technology into the operating room.

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

Special camera detects tumors

November 4, 2013
Tumor removal surgeries pose a great challenge even to skillful and experienced surgeons. For one thing, tumor margins are blending into healthy tissue and are difficult to differentiate. For another, distributed domains ...

New laser-based tool could dramatically improve the accuracy of brain tumor surgery

September 4, 2013
In the battle against brain cancer, doctors now have a new weapon—a new imaging technology that will make brain surgery dramatically more accurate by allowing surgeons to distinguish—at a microscopic level—between brain ...

The brain tumor trap

February 19, 2014
Aggressive brain tumors are usually deadly. The five-year survival rate for patients receiving the best current treatments is typically less than 25 percent. Taking an engineering approach to a potential new treatment, researchers ...

University Hospitals Seidman Cancer Center tests novel drug that makes brain tumors glow hot pink

December 1, 2011
Just 24 hours after Lisa Rek sang at her niece's wedding, her husband Brad was driving her to a local hospital.

Recommended for you

Comparison of screening recommendations indicates annual mammography

August 21, 2017
When to initiate screening for breast cancer, how often to screen, and how long to screen are questions that continue to spark emotional debates. A new study compares the number of deaths that might be prevented as a result ...

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.