Targeting bacterial cell division to fight antibiotic resistance

March 13, 2014,
Targeting bacterial cell division to fight antibiotic resistance
Credit: lamentables

New research has found some compounds effective in blocking the proliferation of certain bacteria, raising hopes of a new class of drugs to combat antibiotic resistant infections.

Nowadays, people do not expect to die as a result of a common infection like bacterial pneumonia. However, many do. Indeed, some have become resistant to all available , due to overuse. The trouble is that there are currently no antibiotic that can kill all possible pathogens. Until now, has been counteracted by isolating derivatives of the antibiotics that are less easily degraded or expelled by the bacteria, by working on chemical modifications of the available antibiotics or by giving a combination of the antibiotics available. But scientists insist on the need to come up with a new class of antibiotics to avoid the dawn of a post-antibiotic era where such drugs no longer work.

Now, DIVINOCELL, an EU funded research project, has opened the way for a new strategy to develop antibiotics. Specifically, its approach is based on creating antimicrobial compounds designed to interfere with proteins involved in cell division, which will block the pathogen's proliferation. "We have studied how Gram-negative bacteria proliferate to find those proteins that are specifically sensitive to inhibition," explains Miguel Vicente, an expert in bacterial cell division at the National Centre of Biotechnology, in Madrid, Spain. So-called Gram-negative bacteria are a type of bacteria, which tends to be more resistant to antibiotic because of the complex structure of their outer layer, which does not easily allow antibiotics entry.

The strategy is untested, at yet. "We expect that if we find a compound that can inhibit the activity of any of these proteins, the bacteria will not proliferate," Vicente, who is also the project coordinator, tells, "and consequently we will have initiated the discovery of a new antibiotic."

Already, there has been some progress. Currently, "the compounds we have discovered are not active at the low concentrations needed for their clinical use," Vicente points out, adding that their toxicity and their ability to be excreted from the body is yet unknown. All in all, it may take 12 to 15 years for such compound to go from the laboratory to the pharmacy.

Experts agree. "One main challenge of the project will be testing and reducing the toxicity of these compounds, as they will have to get companies interested in investing in large and costly clinical trials," comments Diarmaid Hughes, professor of medical molecular bacteriology at Uppsala University, in Sweden.

The lengthy drug development process could also be hampered by the need to have a viable business model. "Now, additional research is needed to transform the most promising compounds into what the industry calls a [drug] lead and then into a [drug] candidate," Vicente notes, "but this is a very lengthy and costly process and antibiotic consumer pattern—that are to be taken only once, not like chronic treatments—does not yield sufficient benefits to incentivise research to develop a new antibiotic."

To counteract this lack of appeal for pharmaceutical companies the EU has funded the ENABLE project, launched in February 2014, to support the development of against Gram-negative bacteria. It is part of the Innovative Medicines Initiative aimed at finding economic models that make research on new drugs more interesting for companies. "The important thing is that all these funded programs show that Europe and the US are taking the problem seriously," Hughes tells "We observe a correlation between the total amount of use of antibiotics and resistance problems", adds Hughes. According to ECDC's 2013 Annual Epidemiological Report, in 2011, the percentage of E.coliisolates resistant to third-generation antibiotic called cephalosporins ranged from 3% in Sweden to 36% in Cyprus and showed a clear north-to-south gradient.

Other experts believe that there is a need to better manage the adminstration of new classes of antibiotics to avoid resistance. "It is really important that researchers look for new antibiotics but, at the same time, it would be such a waste of time and money if these antibiotics would come to the market and just be handled in the same irrational way, as we have been doing with the previous generations," says Erika Vlieghe, a clinical infectiologist at the Institute of Tropical Medicine, in Antwerpen, Belgium. She is a specialist in low income countries where the impact of antibiotic is even higher. She concludes: "We need a structure that ensures that these new antibiotics will be used under both the right prescription and the right indication."

Explore further: Evolution winning in bacteria vs antibiotics arms race

Related Stories

Evolution winning in bacteria vs antibiotics arms race

November 19, 2013
Science is running out of new ways to attack harmful bacteria, while drug companies are abandoning antibiotic research and development, according to a University of Adelaide drug expert.

CDC addresses burden, threat of antibiotic resistance

January 6, 2014
(HealthDay)—The burden and threats posed by antibiotic resistance infections are discussed in a report published by the U.S. Centers for Disease Control and Prevention.

Antibiotics – friend and foe?

November 18, 2013
European Antibiotic Awareness Day is marked on the 18th November every year. This year in Norway, a seminar for health care providers about antibiotic use and resistance will be held, as well as several local events around ...

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.