Researchers to explore 3-D-printed bone and tissue scaffolds

March 6, 2014, University of Pittsburgh

Researchers from the University of Pittsburgh's Swanson School of Engineering and McGowan Institute for Regenerative Medicine (MIRM) are proposing that if 3-D printers, or additive manufacturing, can produce custom replacement parts for machines, why couldn't the same process create biodegradable tissue repair structures for the human body?

"Additive Manufacturing of Biomedical Devices from Bioresorbable Metallic Alloys for Medical Applications" was one of 15 projects selected by America Makes, the National Additive Manufacturing Innovation Institute, as part of its second call for (AM) applied research and development projects. Principal investigator is Prashant Kumta, PhD, the Swanson School's Edward R. Weidlein Chair Professor and professor of bioengineering, chemical and petroleum engineering, mechanical engineering and materials science, and professor of oral biology in the School of Dental Medicine; and co-PI is Howard Kuhn, PhD, adjunct professor of industrial engineering. Patrick Cantini, director of Scientific Collaborations for the University of Pittsburgh Medical Center (UPMC) and director of the McGowan Institute's Center for Industry Relations, will serve as project manager.

Corporate partners include ExOne (North Huntingdon, Pa.) and Magnesium Elektron (Madison, Ill.), and Hoeganaes, Cinnaminson, NJ. The $590,000 contract is for an 18-month period. The research group's America Makes proposal was based upon the article, "Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing" in the journal Acta Biomaterialia (9 (2013) 8593-8603).

"Additive manufacturing combines the best of technologies – the ability to construct complex structures via computer imaging utilizing a combination of advanced biocompatible and more importantly, biodegradable alloys," Dr. Kumta said. "Thanks to computer-aided tomography, or CAT scans, we can directly image a damaged structure like a bone or trachea and construct a biodegradable iron-manganese based scaffold to promote natural tissue growth during the healing process. This reduces the risk of disease transmission via methods such as bone grafting, and allows for a more precise framework for the body to heal itself by controlling the degradability of the alloy by careful alloy design and engineering."

In addition to precise modeling of a body structure, additive manufacturing allows for the use of biodegradable alloys that serve as functional scaffolds for inducing cells to grow as well as platforms for delivering biological molecules and antibiotics, rather than as artificial implants.

"Although we could create a ceramic or plastic part with additive manufacturing, this is not as ideal as an iron-manganese alloy which is stronger, more ductile and degrades over time to be replaced by new bone," Dr. Kuhn added.

A process called "sintering" cures the scaffolds to provide structural integrity to the bonded particles. During this phase of the research, the scaffolds will be evaluated for biocompatibility, bioresorption and mechanical properties. Some of the such as bone fixation plates and screws, as well as tracheal stents will be produced in preparation for later clinical studies.

"Additive manufacturing is a game-changer for biomedical research because it not only provides a framework structure for cells and tissue to grow providing thus a better foundation for the body to repair its own tissues, but also because it can be utilized in remote areas such as army field hospitals, where access to traditional treatments may be limited," Dr. Kumta said. "Rather than implanting an inert screw or plate or joint, we can utilize a degradable metallic alloy which provides the template allowing the body's own regenerative machinery to provide an effective pathway to heal itself."

Explore further: NASA boards the 3-D-manufacturing train

Related Stories

NASA boards the 3-D-manufacturing train

February 5, 2014
Given NASA's unique needs for highly custom­ized spacecraft and instrument components, additive manufacturing, or "3-D printing," offers a compelling alternative to more traditional manufacturing approaches.

3D-printed metal bike frame is light but strong

February 10, 2014
(Phys.org) —As a bicycle newsmaker, you can file this under 3D-printed projects and you can flag it as a uniquely light yet strong 3D-printed titanium bicycle frame. The frame, announced earlier this month, was manufactured ...

Silk-based surgical implants could offer a better way to repair broken bones

March 4, 2014
When a person suffers a broken bone, treatment calls for the surgeon to insert screws and plates to help bond the broken sections and enable the fracture to heal. These "fixation devices" are usually made of metal alloys.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.