Repeated hUCB injections may improve prognosis of children with deadly inherited disorder

March 28, 2014, Cell Transplantation Center of Excellence for Aging and Brain Repair

New insight has been gained into treating an inherited disorder that creates serious neurological and behavioral disabilities in children and usually leads to death in the teen years.

In a recent study into the effects of human umbilical cord blood mononuclear cells (hUCB MNCs) when they are injected to counter the symptoms and progression of Sanfilippo syndrome type III B (MPS III B), researchers found that repeated injections into laboratory mice modeled with the disorder had clear benefits for the mice receiving multiple injections over control groups that received single injections of either a high or low dose of cells.

The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub.

MPS III B results from a genetically programmed deficit of the Naglu enzyme. The deficit creates a build-up of heparan sulfate - a complex carbohydrate - that accumulates in lysosomes, cells that are responsible for waste disposal. With MPS III B, accumulations of heparin sulfate in the tissues are not eliminated and the accumulation causes damage to multiple organs, including the brain.

"Cell therapy has recently received attention as a potential treatment for lysosomal storage diseases," said study lead author Dr. Allison E. Willing, of the Center of Excellence for Aging and Brain Repair in the Morsani College of Medicine at the University of South Florida. "We have previously shown that a single hUCB into the cerebral ventricle of pre-symptomatic mice, or intravenous cell delivery at different disease stages, had a beneficial effect on the enzyme deficient mice. In the current study, we examined whether administering repeated doses of hUCB MNCs would have a greater effect than a single dose and help to prevent progressive neurodegeneration."

Using three groups of mice modeled with Naglu deficiency by knocking out the Naglu enzyme, the researchers injected one group with repeated doses of hUCB MNCs over a six month period. They administered single doses - either high or low doses - to two other groups of similarly modeled mice. The group that had repeated hUCB MNC doses demonstrated a variety of favorable benefits.

To determine the benefits of repeated hUCB MNC injections, the researchers measured several behavioral and clinical outcomes before and after six months of treatment. These included anxiety, levels of heparin sulfate accumulation, and subsequent pathology in various anatomical brain locations.

"Repeated injections of hUCB MNCs produced the greatest neuroprotection," stated study co-lead author Dr. Svitlana Garbuzova-Davis, of the Center of Excellence for Aging and Brain Repair in the Morsani College of Medicine at the University of South Florida. "Hippocampal structural architecture remained intact in the repeated dose-treated mice as compared to the other groups. Also, there was restoration of the dendritic tree in the group receiving repeated doses. We also saw a striking reduction in microgliosis and microglial activation after hUCB MNC treatment."

The researchers speculated that administering hUCB MNCs may decrease neuropathy through modulation of inflammatory and immune processes as the hUCB MNCs produced numerous neurotrophic and growth factors.

"We demonstrated that hUCB MNCs were particularly effective at modulating anxiety in the Naglu knockout mice,"concluded Paul R. Sanberg, distinguished professor at USF and principal investigator of the Children's Medical Research Foundation funded project. "Our results suggest that repeated administrations of hUCB MNCs produce greater amelioration of the underlying disease pathology. However, further studies will be necessary to determine if this treatment regimen can slow the progression of the disease, increase survival while minimizing symptoms, and determine whether improved outcomes are a function of enzyme administration, decreased inflammation, or both."

"This study highlights the benefits of using multiple injections rather than a single injection to treat Sanfilippo syndrome type III B" said Dr. John Sladek, Cell Transplantation section editor and professor of neurology and pediatrics at the University of Colorado School of Medicine. "This use of multiple treatments may be applicable to other neurodegenerative disorders, as already suggested by animal studies published by the same group for the treatment of amyotrophic lateral sclerosis."

Explore further: Researchers find additional benefits of cord blood cells in mice modeling ALS

More information: Willing, A. E.; Garbuzova-Davis, S. N.; Zayko, O.; Derasari, H. M.; Rawls, A. E.; James, C. R.; Mervis, R. F.; Sanberg, C. D.; Kuzmin-Nichols, N.; Sanberg, P. R. Repeated Administrations of Human Umbilical Cord Blood Cells Improve Disease Outcomes in a Mouse Model of Sanfilippo Syndrome Type III B. Cell Transplant. Appeared or available online: December 30, 2013.

Related Stories

Researchers find additional benefits of cord blood cells in mice modeling ALS

February 6, 2012
Repeated, low-dose injections of mononuclear cells derived from human umbilical cord blood (MNC hUCB, tradename: U-CORD-CELL) have been found effective in protecting motor neuron cells, delaying disease progression and increasing ...

Therapeutic time window important factor for cord blood cell transplantation after stoke

October 1, 2012
A research team from Germany has found that optimal benefit and functional improvement for ischemic stroke results when human umbilical cord blood mononuclear cells (hUCB MNCs) are transplanted into rat stroke models within ...

Researchers report on promising new therapy for devastating genetic disorder

February 12, 2014
A promising new therapy has – for the first time – reduced damage to the brain that can be caused by Sanfilippo B (MPS IIIB), a rare and devastating genetic disease, Los Angeles Biomedical Research Institute (LA BioMed) ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.