Researchers find additional benefits of cord blood cells in mice modeling ALS

February 6, 2012, University of South Florida

Repeated, low-dose injections of mononuclear cells derived from human umbilical cord blood (MNC hUCB, tradename: U-CORD-CELL) have been found effective in protecting motor neuron cells, delaying disease progression and increasing lifespan for mice modeling amyotrophic lateral sclerosis, or ALS, also referred to as Lou Gehrig's disease, report University of South Florida researchers and colleagues from Saneron CCEL Therapeutics, Inc., and the Ribeirao Preto School of Medicine at the University of Sao Paulo, Brazil.

Their study was published online Feb. 3, 2012 in the journal .

ALS is a characterized by loss of leading to progressive paralysis and death. To date, there are no reliable treatments available for ALS, although therapies are promising. The researchers considered MNC hUBC preferable to other potential cell sources for injection because the hUBC are rich in primitive stem cells and can develop into various kinds of cells, including .

Although previous studies found single high doses of MNC hUBC administered to pre-symptomatic ALS-modeled mice effective, the USF researchers considered a single high dose for clinical purposes "impractical."

"Our present pre-clinical, translational study evaluated the effects of multiple low-dose, systemic injections of MNC hUBC into G93A mice modeling ALS," said study lead author Svitlana Garbuzova-Davis, PhD, DSc, assistant professor in the USF Center of Excellence for Aging and . "The study included symptomatic mice, asymptomatic mice and a control group."

According to Dr. Garbuzova-Davis, a "modulatory effect" of the MNC hUCB cells was determined on the inflammatory environment of the spinal cord.

"We hypothesized that the effect of the multiple MNC hUCB cell administrations decreased neuroinflammation in the spinal cord, even when administered into symptomatic mice, resulting in neuroprotection that promoted motor neuron survival," said co-author Maria C. O. Rodrigues, MD, PhD, associated with both USF and the University of Sao Paulo.

Additionally, the researchers found that although the number of grafted cells identified in the spinal cord was low, the treatment was effective, suggesting that various factors secreted by the cells accounted for the therapeutic impact.

Functional improvement in the test mice was determined through several tests.

"Because functional improvement was detected in the mice shortly after MNC hUCB administration, a neuroprotective function of the factors secreted by the administered cells is likely, along with some degree of motor neuron repair," Dr. Garbuzova-Davis said.

The study results should provide essential information and the impetus for future clinical trials of low-dose MNC hUBC, said co-author Nicole Kuzmin-Nichols, MBA, president and COO of Saneron CCEL Therapeutics, Inc.

"Most important for translational purposes was proving the effectiveness of cell administration initiated once the symptomatic disease stage had begun," Kuzmin-Nichols said. "This study illustrated how the practical application of multiple low doses commencing at the beginning of the symptomatic disease stage could ultimately benefit disease outcomes."

The findings provide new insights and may be key to future treatment in patients with ALS, said Clifton L. Gooch, MD, FAAN, professor and chair of the USF Department of Neurology, director of the USF Neuroscience Collaborative, and founder of the USF ALS Center.

"Many therapies have shown benefit when given to ALS mice at a time before they develop symptoms of the disease," Dr. Gooch said. "Unfortunately, in humans we have no clear way to identify who is going to get ALS in advance of symptoms in the vast majority of patients. Consequently, the fact that MNC hUCB therapy works -- even when given after symptom onset - is very important and makes it more likely that this approach may also work in humans. Additionally, this study underscores the importance of the cells and factors that act to support the deteriorating motor nerves, knowledge critical to our understanding and treatment of ALS."

Explore further: Potential new drug target in Lou Gehrig's disease

More information: Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS, PLoS ONE, February 3, 2012.

Related Stories

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.