Lining up our sights

March 24, 2014, Ludwig Maximilian University of Munich
Credit: davidtorma4 / fotolia.com

Neurologists at Ludwig Maximilian University of Munich have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective rehabilitation of patients with vestibular or cerebellar dysfunction.

When we shift the direction of our gaze, head and are normally highly coordinated with each other. Indeed, from the many possible combinations of speed and duration for such movements, the brain chooses the one that minimizes the error in reaching the intended line of sight. Dr. Nadine Lehnen, who heads a research group based at LMU's Center for Vertigo and Balance Disorders, in collaboration with her colleague Dr. Murat Saglam and Professor Stefan Glasauer of the Center for Sensorimotor Diseases at LMU, have now published a paper in the latest issue of the journal of Brain which investigates the significance of the for this optimization of motor coordination. The vestibular system in the brain is mainly responsible for the maintenance of balance and posture. The new work focused on subjects suffering from bilateral defects in the vestibular system (a complete vestibulopathy) or lesions in the cerebellum, which is functionally linked to it.

The authors of the new study had previously developed a mathematical model that enabled them to predict the horizontal movements of the head and eyes in response to the presentation of an off-center stimulus. "When subjected to repeated trials, healthy subjects are able to select the combination of eye and head movements that minimizes gaze shift variability," says Glasauer. They unconsciously choose the set of movements associated with the least error in the endpoint. Moreover, they can do this even when wearing a helmet with weights attached, which alters the moment of inertia of the head.

Learning to find the endpoint

However, who show defects in the vestibular system or the cerebellum have greater difficulty in controlling the direction of gaze in response to changes in their environment. "It turns out that information relayed from the balance organs to the vestibular system is essential for the optimization of gaze shifts," says Nadine Lehnen. Patients with complete bilateral vestibular loss are therefore unable to perform such shifts in the most efficient way. "In striking contrast, patients with cerebellar damage can, to a certain extent, learn to optimize certain parameters of head and eye movements, by adjusting the velocity of head movement, for instance," says Glasauer.

"These results provide the first evidence that the vestibular system is critical for optimizing voluntary movements", says Dr. Kathleen E. Cullen from McGill University in Montreal in a scientific commentary to the study appearing in the print issue of Brain. The new findings are of relevance for the rehabilitation of patients who have suffered damage to the cerebellum and patients with incomplete vestibulopathies. "We assume that gaze shift control in these patients can be enhanced by a rehabilitation training based on active head movements," says Nadine Lehnen. Head movements provide the vestibular feedback which generates the sensorimotor error messages that underlie the ability to learn how to optimize the coordination of eye and head movements. Instead of trying to hold their heads steady, these patients should be encouraged to actively move their heads, when they shift their gaze.

The question if patients with partial vestibulopathy can optimize gaze shift behavior by engaging in active head movements is now under investigation. This work forms part of a rehabilitation study which is being carried out at the Center for Vertigo and Balance Disorders at Munich University Hospitals, and is financed by the Federal Ministry for Education and Research.

Explore further: Clear vision despite a heavy head: Model explains the choice of simple movements

More information: brain.oxfordjournals.org/conte … /137/4/1080.abstract

Related Stories

Clear vision despite a heavy head: Model explains the choice of simple movements

November 9, 2011
The brain likes stereotypes - at least for movements. Simple actions are most often performed in the same manner. A mathematical model explains why this is the case and could be used to generate more natural robot movements ...

Ballet dancers' brains adapt to stop them getting in a spin

September 26, 2013
Scientists have discovered differences in the brain structure of ballet dancers that may help them avoid feeling dizzy when they perform pirouettes.

Patients with balance disorders benefit from integrative therapy

November 28, 2011
Over the last 25 years, intensive efforts by physicians, physical therapists, and occupational therapists have developed integrative rehabilitation regimens that can alleviate balance disorders associated with neurological ...

Researcher finds altered cerebella in those with Down syndrome

August 24, 2011
A scientist investigating why those with Down syndrome often have poor balance and motor coordination has found that key eye reflexes are substantially altered.

Studies advance potential use of MRI magnetic fields to treat balance disorders

March 19, 2014
Expanding on earlier research, Johns Hopkins researchers report that people with balance disorders or dizziness traceable to an inner-ear disturbance show distinctive abnormal eye movements when the affected ear is exposed ...

Study offers hope for sufferers of vertigo

October 5, 2012
We've known for a while that the vestibular system in the inner ear is responsible for helping us keep our balance. And while researchers have already developed a basic understanding of how the brain constructs our perceptions ...

Recommended for you

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.