Studies advance potential use of MRI magnetic fields to treat balance disorders

March 19, 2014

Expanding on earlier research, Johns Hopkins researchers report that people with balance disorders or dizziness traceable to an inner-ear disturbance show distinctive abnormal eye movements when the affected ear is exposed to the strong pull of an MRI's magnetic field.

The researchers first reported in 2011 in the journal Current Biology that an MRI's magnetic field pushes on the fluid responsible for maintaining balance, causing subjects undergoing MRI scans to have jerky and dizziness.

Two new studies now suggest that these strong magnets could be used to diagnose, treat and study inner ear disorders in the future, replacing more invasive and uncomfortable examinations.

In the first study, reported online March 13 in the journal Frontiers in Neurology, a team led by Bryan Ward, M.D., a resident in the Department of Otolaryngology-Head and Neck Surgery at the Johns Hopkins University School of Medicine, placed nine patients with balance problems in an MRI machine and took video of their eye movements, without taking any MRI images.

Their earlier research had shown that healthy volunteers subjected to a 7 Tesla magnetic field—the strength of the most modern MRI machine—experienced a characteristic eye movement called nystagmus, in which the eyes repeatedly drift to one side and then jerk back.

This time, the researchers were curious whether this movement might look different in patients with inner ear problems, whose semicircular canals—the fluid-filled spaces inside the ear that are responsible for maintaining balance—would likely react differently to the MRI magnet's pull.

While healthy, normal volunteers' eyes moved side to side when in the MRI, with the direction of movement dependent on whether they entered the MRI tunnel head or feet first, people with "one-sided" inner ear problems displayed different eye movements that depended on which ear was affected.

For example, Ward says, the eyes of patients whose left ear was affected drifted down and jerked up when put into the MRI tunnel head first. Those whose right ear was affected had an opposite movement. Both sets of patients showed patterns of rapid eye motions not seen in the healthy volunteers.

Because the abnormal findings consistently showed which ear was affected in the patients, Ward says, researchers may eventually be able to use to diagnose the cause of balance disorders. Currently, people whose dizziness or imbalance is suspected to originate in the inner ear may have eye movements measured after being spun around in a chair, tilted backward on special tables, or subjected to sometimes uncomfortable ear canal irrigation with cold or warm water.

Magnetic stimulation, acting as a virtual reality stimulator, could also offer an alternative to traditional physical therapy for , which often involve rapid head movements that make patients dizzy.

"Using magnetic stimulation, perhaps in a portable device that could fit in a doctor's office, could offer an alternative that's more comfortable," Ward says.

In a second study, published March 19 in the journal PLOS One, Ward and his colleagues set out to investigate whether the inner ear balance systems of zebrafish are also influenced by magnetic stimulation. Zebrafish are a popular model for genetics and pharmaceutical studies of hearing and balance because of their surprising anatomical similarity to humans' vestibular systems, Ward says.

If the inner of these fish were also affected by a strong magnet's pull, he says, these animals could eventually be a useful tool for studying which genes are involved in inherited inner ear balance problems or which drugs could be used to treat these disorders.

To investigate, the researchers placed 30 healthy zebrafish, one at a time, into a very strong 11.7 Tesla magnetic field, using a smaller MRI machine to better accommodate the aquarium used to hold each fish.

When the aquarium was in the magnetic field, the majority of fish responded in a dramatic way akin to the vertigo and imbalance that humans with inner ear system disturbances show: The fish flipped, rolled and swam faster than normal. The fish reverted to normal swimming behavior only when their aquarium was taken out of the MRI machine and away from the magnet.

To make sure this behavior wasn't due to any vision changes or effects on the lateral line—an organ on the side of the body of a fish important for helping the animals maintain posture or sense electrical currents in the water—the researchers turned lights on and off every 30 seconds while the fish were in the magnetic field and also had them swim in the magnetic field after they'd been exposed to gentamicin, an antibiotic that kills off lateral line cells. Neither experiment changed the animals' odd swimming behavior in the magnetic field.

The researchers further observed that individual fish seemed to be affected by the orientation of the magnetic field, swimming preferentially either in the direction of the magnetic field or in an opposite orientation. For example, some of the animals preferred to swim north-south in a north-south field, while others preferred to swim east-west. Putting the animals into an opposing field didn't affect their preference. These results could add insight into the scientific field of magnetosensation, which studies how some animals are able to sense the Earth's and use it for purposes such as migration, Ward says.

Overall, he adds, the findings in humans and fish could eventually lead to useful ways to harness the effect of an MRI magnet on the inner ear.

"We may someday have some practical applications for this anatomical oddity," Ward says.

Explore further: What causes MRI vertigo? Machine's magnetic field pushes fluid in the inner ear's balance organ

Related Stories

What causes MRI vertigo? Machine's magnetic field pushes fluid in the inner ear's balance organ

September 22, 2011
A team of researchers says it has discovered why so many people undergoing magnetic resonance imaging (MRI), especially in newer high-strength machines, get vertigo, or the dizzy sensation of free-falling, while inside or ...

Helping to restore balance after inner ear disorder

June 13, 2013
Many disorders of the inner hear which affect both hearing and balance can be hugely debilitating and are currently largely incurable. Cochlear implants have been used for many years to replace lost hearing resulting from ...

Link confirmed between salmon migration, magnetic field

February 6, 2014
A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth's magnetic field, suggesting it may help explain how the fish can navigate across thousands of ...

MRI scanners affect concentration and visuospatial awareness

August 29, 2012
Standard head movements made while exposed to one of the three electromagnetic fields produced by a heavy duty MRI scanner seem to temporarily lower concentration and visuospatial awareness, shows an experimental study published ...

Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease

March 5, 2014
New research shows that ultra-high-field magnetic resonance imaging (MRI) provides detailed views of a brain area implicated in Parkinson's disease, possibly leading to earlier detection of a condition that affects millions ...

Recommended for you

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.