Study describes first maps of neural activity in behaving zebrafish

March 19, 2014
Zebrafish

In a study published today in the scientific journal Neuron, neuroscientists at the Champalimaud Foundation, in collaboration with neuroscientists from Harvard University, describe the first activity maps at the resolution of single cells and throughout the entire brain of behaving zebrafish.

"This opens up new possibilities for studying neural circuits in the ," says Michael Orger, principal investigator at the Champalimaud Neuroscience Programme. "In order to understand how the brain works, it is imperative that we can record the activity of the cells of the brain – the neurons, and at the same time be able to relate that to an animal's behaviour". Until recently, available methods allowed researchers to monitor activity in only a small fraction of the neurons in the brain, but "Now, we can systematically record activity through the whole brain of the zebrafish, which contains about one hundred thousand neurons, while at the same time we are monitoring its movements using high speed video."

Claudia Feierstein, a postdoctoral fellow in the lab of Dr. Orger explains, "by watching the brain while the fish tries to follow rotating visual patterns by moving its eyes and tail, we were able to identify the specific brain structures that are involved in these behaviours, and how different patterns of activity reflect the different aspects of sensory and motor processing."

One of the strengths of this method is that, because whole brain activity maps are recorded from a single fish, rather than pieced together across multiple experiments, it is possible to compare the neural circuit organization across different individuals. "When we talk about brain activity maps," says Dr. Orger "an important question is to what extent the circuits in different animals are similar. How precisely can we predict where we will find particular neurons from one brain to another?".

Surprisingly, the study revealed that, while the network of neurons mediating simple visual-motor behaviours is widely distributed across the brain, the pattern can be highly stereotyped between individuals. "If you identify a region with a particular pattern of activity in one fish, you can typically find neurons with the same activity within a few micrometers in the brain of another fish." says Ruben Portugues, a scientist from the group of Professor Florian Engert at Harvard, who coauthored the study. This has important practical consequences, because it makes it possible to build a detailed functional atlas of the brain, which allows researchers to locate and target specific groups of neurons. This map of functional "blocks" can also be aligned with existing maps of gene expression to assign behavioural roles to different cell types in the brain.

This systematic approach to mapping activity also enables researchers to discover rare cell populations that might have stayed hidden for decades. "We found a handful of neurons in the main visual processing area of the fish brain, called the optic tectum, that integrate motion information from both eyes. This was surprising since this area only gets direct information from one eye." Says Dr. Orger. "These cells are few in number, but may play an important role in the behaviour of the animal, since they allow him to decode how he is moving through the water." According to the researchers, the next step is to use optical and genetic targeting of interesting subpopulations of , such as this one, and apply specific manipulations that will ultimately reveal how the brain processes sensory information to generate appropriate movements.

Explore further: Brain asymmetry improves processing of sensory information

Related Stories

Brain asymmetry improves processing of sensory information

February 6, 2014
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information.

Our brain has switch board to guide behavior in response to external stimuli

February 14, 2014
How do our brains combine information from the external world (sensory stimulation) with information on our internal state such as hunger, fear or stress? NERF scientists demonstrate that the habenula, a specific part in ...

Motion-sensing cells in the eye let the brain 'know' about directional changes

March 4, 2014
How do we "know" from the movements of speeding car in our field of view if it's coming straight toward us or more likely to move to the right or left?

Virtual reality allows researchers to measure brain activity during behavior at unprecedented resolution

May 9, 2012
Researchers have developed a new technique which allows them to measure brain activity in large populations of nerve cells at the resolution of individual cells. The technique, reported today in the journal Nature, has been ...

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Research reveals first glimpse of brain circuit that helps experience to shape perception

March 2, 2014
Odors have a way of connecting us with moments buried deep in our past. Maybe it is a whiff of your grandmother's perfume that transports you back decades. With that single breath, you are suddenly in her living room, listening ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.