Real-time insight into our brain

March 4, 2014

Combining two imagine technologies, such as MRI for structure and MEG for activity, could provide a new understanding of our how our brain works.

New advances related to new uses of imaging technologies could help scientists uncover the brain's mysteries. Now, European scientists have successfully combined magnetic resonance imagining, or MRI, scanning with an emerging called magnetoencephalography, or MEG. There have thus bundled two ways of imaging the brain in one helmet-like device. Because MEG records the magnetic fields produced by our brain, as brain cells fire off messages to one another, it gives scientists a real-time insight into our brain as it processes its world around it. MRI, meanwhile, gives structural images of the brain by looking at and oxygenation levels. Combining these techniques is precisely what the MEG-MRI project, funded by the EU, did.

Ultimately, these new advances in technology imaging could help doctors understand what is happening in the brains of patients, such as those with epilepsy. Another potential application would be in helping guide brain surgeons away from critical areas of a patient's brain. It could help visualising areas of the brain that light up when a patient talks, for example.

How does it work? "You can look at streams of information as someone is reading or looking at visual images," explains Risto Ilmoniemi, professor of biomedical engineering at Aalto University in Finland and the lead scientist in the project. "MRI gives the location, but not the sequence of when things happen." For MEG to pick up the electrical currents, at least a thousand neurons firing is needed. "They are sending signals to each other and there are electrical currents involved, produced by neurons, and these currents can be measured. MEG measures what comes out of the brain, the electromagnetic field generated," Ilmoniemi explains. The MEG machine is formed like a bicycle helmet, but contains hundreds of sensors inside.

Other scientists have previously been using MEG, and separately followed up using so-called functional MRI (fMRI). The latter measures brain activity related to a given function by detecting associated changes in blood flow. "We use a variety of imaging techniques for the brain, but I prefer to use MEG for a number of reasons," says Thomas Elbert, professor of neuropsychology at the University of Konstanz in Germany. "First of all, the brain operates much faster than would indicate [which is what fMRI detects]," he tells youris.com, adding: "Also fMRI is too slow and too gross when you are looking at activity, it just finds peaks of activities rather than the complex range of mountains." So the full range of peaks and valleys can be better seen through the use of MEG.

Therefore, experts see a real benefits in combining the two imagine techniques. "Doing simultaneous recordings is often very valuable scientifically and clinically: measuring different types of signals at different times means you're not sure if they're measures of the same events," says Gregory Miller, clinical psychologist at University College California, Los Angeles. "When the machines are separate, the patient or research participant has to be removed from the equipment and the procedure repeated, which means the recordings are done under different circumstances. For example, there can be changes due to practice, boredom, or fatigue."

There are other advantages as well. "Combining MEG and MRI in a single instrument would likely provide cost savings, which means not only saving money but making the technology more widely available. This is particularly important because MEG is severely underutilised, in clinical practice and in research," observes Miller. "Second, the combination would greatly reduce the footprint in space-constrained labs and clinics, again making the capabilities available to more scientists, clinicians, and patients. Third, the combination would potentially allow near-simultaneous recordings of very different types of biological signals."

Miller notes that MEG is safer than fMRI, provides enormously better temporal resolution than fMRI and sometimes can image more deeply in the brain than another method, called scalp electroencephalography (EEG). "So, having more access to MEG would let me study fast neural activity in deeper brain structures than I can with fMRI or EEG. This would help us address key issues about brain networks – brain circuitry – in depression, anxiety, and schizophrenia," Miller says.

Debates about whether imagine techniques such as EEG, MEG, MRI, positron emission tomography (PET), or optical is generally the best imaging method are "silly," says Miller. "It's been common to assume that a scientist has to choose which type of imaging method is best, but that's like trying to decide whether a hammer or a chisel is better. For some jobs, one is clearly better. For other jobs, you need both." The European project has now produced a prototype that combines MEG and MRI. They hope to make improvements and have it suitable for the clinic in four to five years. The benefits should flow for patients, doctors and researchers.

Explore further: Unprecedented accuracy in locating brain electrical activity with new device

More information: www.megmri.net/

Related Stories

Unprecedented accuracy in locating brain electrical activity with new device

July 26, 2012
Researchers at Aalto University in Finland have developed the world's first device designed for mapping the human brain that combines whole-head magnetoencephalography (MEG) and magnetic resonance imaging (MRI) technology. ...

New brain-scanning technique allows scientists to see when and where the brain processes visual information

January 27, 2014
Every time you open your eyes, visual information flows into your brain, which interprets what you're seeing. Now, for the first time, MIT neuroscientists have noninvasively mapped this flow of information in the human brain ...

Training your brain using neurofeedback

January 21, 2014
A new brain-imaging technique enables people to 'watch' their own brain activity in real time and to control or adjust function in pre-determined brain regions. The study from the Montreal Neurological Institute and Hospital ...

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Combination of two imaging techniques allows new insights into brain function

August 26, 2013
The ability to measure brain functions non-invasively is important both for clinical diagnoses and research in Neurology and Psychology. Two main imaging techniques are used: positron emission tomography (PET), which reveals ...

World-first device offers new insight into life with a cochlear implant

October 30, 2013
A new imaging device will be launched on Macquarie University's campus today, helping researchers in the ARC Centre of Excellence in Cognition and its Disorders (CCD) and HEARing Cooperative Research Centre (CRC) better understand ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.