'Glue' holding together skin cells and other epithelial tissue more active than realized

March 24, 2014, Genetics Society of America

The strong mechanical attachments – the "glue"—that hold together the cells of the skin and the other epithelial tissues of the body are the adherens junctions.

These junctions are responsible for maintaining the shape and integrity of the sheets of that line such as the , as well as the surfaces of structures such as the heart. Defects in the proteins of these attachments have been implicated as potential contributors to the development and spread of cancer.

Recent research on Drosophila flies, combined with previous studies in cell cultures, are challenging the traditional view that adherens junctions maintain tissue integrity by passively resisting disruptive forces.

In studies with Drosophila embryos, the Princeton University lab of Nobel laureate Eric Wieschaus, Ph.D., has uncovered the first evidence in living organisms that adherens junctions actively respond to mechanical cues by remodeling their own position and intensity, which in turn restructures the cells.

Mo Weng, Ph.D., postdoctoral fellow in the lab, used live imaging and quantitative image analysis of fixed and live embryos to determine that these changes depend on mechanical force mediated by the motor protein myosin and precede the changes in the distribution of cell polarity proteins, such as Bazooka, that are responsible for spatial organization of the cells.

Understanding the regulation and functioning of adherens junctions sheds light on the organization of multi-cellularity—from cell-cell contacts to the remodeling of tissues and organs during life.

Explore further: Essential protein for the formation of new blood vessels identified

More information: Abstract: "Mechanical force induced adherens junctions remodeling." Mo Weng2, Eric Wieschaus1,2. 1) Howard Hughes Medical Institute; 2) Molecular Biology, Princeton University, Princeton, NJ. Link: abstracts.genetics-gsa.org/cgi … il.pl?absno=14531606

Related Stories

Essential protein for the formation of new blood vessels identified

January 17, 2012
New research explains how cells regulate their bonds during the development of new blood vessels. For the first time, the role of the protein Raf-1 in determining the strength of the bond between cells has been shown. If ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.