Bioinformatics profiling identifies a new mammalian clock gene

April 22, 2014
Mice are nocturnal. When both wild type and Chrono knockout mice are kept in an environment with 12 hours of light (blue) and 12 hours of dark (white).They align their activity (green) to the lighting schedule and run in the dark. When the animals are switched to constant darkness (arrow), the influence of their internal circadian clock is revealed. Both wild type and Chrono knockout mice maintain regular patterns of activity and rest that are slightly shorter than 24 hours -- each successive day the onset of activity occurs somewhat earlier. However, the endogenous activity period of Chrono knockout mice is about 25 minutes longer than the period of wild type mice. Credit: Ron Anafi, M.D., Ph.D.; John Hogenesch, Ph.D., Perelman School of Medicine, University of Pennsylvania

Over the last few decades researchers have characterized a set of clock genes that drive daily rhythms of physiology and behavior in all types of species, from flies to humans. Over 15 mammalian clock proteins have been identified, but researchers surmise there are more. A team from the Perelman School of Medicine at the University of Pennsylvania wondered if big-data approaches could find them.

To accelerate clock-gene discovery, the investigators, led by John Hogenesch, PhD, professor of Pharmacology and first author Ron Anafi, MD, PhD, an instructor in the department of Medicine, used a computer-assisted approach to identify and rank candidate clock components. This approach found a new core clock gene, which the team named CHRONO. Their findings appear this week in PLOS Biology.

Hogenesch likens their approach to online profiling of movie suggestions for customers: "Think of Netflix. Based on your personalized movie profile, it predicts what movies you may want to watch in the future based on what you watched in the past." He thought the team could use this approach to identify new clock genes, given criteria already established from the "behavior" of known clock genes identified in the past two decades:

  • Clock genes cause oscillations at the messenger RNA and protein level.
  • Clock proteins physically interact with other clock proteins to form complexes that control daily rhythm inside cells.
  • Disruption of clock genes in cell models cause changes in observable behavioral and metabolic traits on a 24-hour cycle.
  • Clock genes are conserved across 600 million years of evolution from fruitflies to humans.

"We used a simple form of machine learning to integrate biologically relevant, genome-scale data and ranked genes based on their similarity to known clock proteins," explains Hogenesch. Using biological big data such as that found in the Circadian Expression Profile Data Base (CircaDB) to search for new clock genes, the Penn team evaluated the features of 20,000 human genes to isolate other genes that have the same clock-gene characteristics. "The hypothesis is that other genes that functionally resemble known clock genes are more likely to be clock genes themselves, just like movies that resemble your old favorites are more likely to become new favorites," says Anafi.

They found that several of the genes they identified physically interact with known clock proteins and modulate the daily rhythm of cells. One candidate, dubbed Gene Model 129, interacted with BMAL1, a well-known core clock component, and repressed the key driver of molecular rhythms, the BMAL1/CLOCK protein complex that guides the daily transcription of other proteins in a complicated system of genes that switch on and off over the course of the 24-hour day.

Given these results, the team renamed Gene Model 129, CHRONO, for computationally highlighted repressor of the network oscillator. The litmus test for identifying clock genes, however, is whether they regulate behavior: In mice in which CHRONO had been knocked out, Hogenesch found that the mice had a prolonged circadian period.

A companion study by colleagues at RIKEN in Japan and the University of Michigan, using a genome-wide analysis instead of a machine-learning approach, produced similar findings. Both studies link CHRONO to BMAL1. In the future, Anafi and Hogenesch will be investigating whether CHRONO regulates sleep, as most influence this behavior.

Explore further: New cell models for tracking body clock gene function

Related Stories

New cell models for tracking body clock gene function

April 9, 2014
The consequences of modern life—shift work, cell phone addiction, and travel across time zones—all disturb internal clocks. These are found in the brain where they regulate sleep and throughout the body where they regulate ...

Researchers determine structure of 'batteries' of the biological clock

May 31, 2012
Howard Hughes Medical Institute scientists have determined the three-dimensional structure of two proteins that help keep the body's clocks in sync. The proteins, CLOCK and BMAL1, bind to each other to regulate the activity ...

Breaking the brain clock predisposes nerve cells to neurodegeneration

November 25, 2013
As we age, our body rhythms lose time before they finally stop. Breaking the body clock by genetically disrupting a core clock gene, Bmal1, in mice has long been known to accelerate aging , causing arthritis, hair loss, cataracts, ...

Nutrition influences metabolism through circadian rhythms

December 19, 2013
A high-fat diet affects the molecular mechanism controlling the internal body clock that regulates metabolic functions in the liver, UC Irvine scientists have found. Disruption of these circadian rhythms may contribute to ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.