Researchers identify brain cells that control backward walking in fruit flies

April 3, 2014
The picture depicts two neurons, MDN (Moonwalker Descending Neuron) and MAN (Moonwalker Ascending Neuron), that in the course of the study were found to be implicated in backward walking. The figure shows segmented representations of these neurons mapped onto a common template fly brain. Credit: IMP, Science/AAAS

Researchers at the Institute of Molecular Pathology (IMP) in Vienna managed to isolate "moonwalker flies" in a high-throughput screen. Screening a large collection of fruit flies, the scientists found specimens that seemed locked in reverse gear. Dickson and his co-workers were able to trace these changes in walking direction back to the activity of specific neurons in the brain. The results of the study will be published in the current issue of Science.

Most land animals walk forward by default, but can switch to backward walking when they sense an obstacle or danger in the path ahead. The impulse to change walking direction is likely to be transmitted by descending neurons of the brain that control local motor circuits within the central nervous system. This neuronal input can change walking direction by adjusting the order or timing of individual leg movements.

Screening for flies with altered walking patterns

In the current study, Barry Dickson and his team aimed to understand the fly's change in walking direction at the cellular level. Using a novel technology known as thermogenetics, they were able to identify the neurons in the brain that cause a change in locomotion. Their studies involved screening large numbers of with it which specific neurons were activated by heat, producing certain behaviors only when warmed to 30°C, but not at 24°C . Analysing several thousand flies, the researchers looked for strains that exhibited altered walking patterns compared to control animals.

Moonwalker-neurons control backward walking

Using the thermogenetic screen, the IMP-researchers isolated four lines of flies that walked backward on heat activation. They were able to track down these changes to specific nerve cells in the fly brain which they dubbed "moonwalker neurons". They could also show that silencing the activity of these neurons using tetanus toxin rendered the flies unable to walk backward.

The video will load shortly
This movie shows a moonwalking fly taken with a high-speed camera (200 frames/sec) and then slowed down to a tenth of its original speed. Credit: IMP

Among the moonwalker neurons, the activity of descending MDN-neurons is required for flies to walk backward when they encounter an obstacle. Input from MDN brain cells is sufficient to induce backward walking in flies that would otherwise walk forward. Ascending moonwalker neurons (MAN) promote persistent backward walking, possibly by inhibiting forward walking.

"This is the first identification of specific that carry the command for the switch in walking direction of an insect", says Salil Bidaye, lead author of the study. "Our findings provide a great entry point into the entire walking circuit of the fly. "

Although there are obvious differences in how insects and humans walk, it is likely that there are functional analogies at a neural circuit level. Insights into the neural basis of insect walking could also generate applications in the field of robotics. To date, none of the engineered robots that are used for rescue or exploration missions can walk as robustly as animals. Understanding how insects change their walking direction at a neuronal level would reveal the mechanistic basis of achieving such robust walking behavior.

Explore further: These boosts are made for walkin': Study reveals that movement kicks visual system into higher gear

More information: The paper "Neuronal Control of Drosophila Walking Direction" by Salil S. Bidaye, Christian Machacek, Yang Wu and Barry Dickson is published in Science on 3 April, 2014.

Related Stories

These boosts are made for walkin': Study reveals that movement kicks visual system into higher gear

March 13, 2014
Whether you're a Major League outfielder chasing down a hard-hit ball or a lesser mortal navigating a busy city sidewalk, it pays to keep a close watch on your surroundings when walking or running. Now, new research by UC ...

Enigmatic neurons help flies get oriented

October 10, 2013
As a tiny fruit fly navigates through its environment, it relies on visual landmarks to orient itself. Now, researchers at the Howard Hughes Medical Institute's Janelia Farm Research Campus have identified neurons deep in ...

Researchers create a reference atlas for neural circuits in fruit fly larvae

March 28, 2014
(Medical Xpress)—A team of researchers from Johns Hopkins University and Janelia Farm Research Campus has developed a new technique for studying neural circuits that helps tie circuit activity to organism behavior. In their ...

Scientists identify the switch that says it's time to sleep

February 19, 2014
The switch in the brain that sends us off to sleep has been identified by researchers at Oxford University's Centre for Neural Circuits and Behaviour in a study in fruit flies.

Study unlocks secret of how fruit flies choose fruit with just the right amount of ethanol

December 10, 2013
(Phys.org) —Researchers from the University of California working with a team at Howard Hughes Medical Institute in Virginia, have discovered how it is that fruit flies are able to lay their eggs in rotting fruit that has ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.