Cancer and the Goldilocks effect: Too much or too little of a single enzyme may promote cancer

April 3, 2014

Researchers at the University of California, San Diego School of Medicine have found that too little or too much of an enzyme called SRPK1 promotes cancer by disrupting a regulatory event critical for many fundamental cellular processes, including proliferation.

The findings are published in the current online issue of Molecular Cell.

The family of SRPK kinases was first discovered by Xiang-Dong Fu, PhD, professor in the Department of Cellular and Molecular Medicine at UC San Diego in 1994. In 2012, Fu and colleagues uncovered that SPRK1 was a key signal transducer devoted to regulating alternative pre-mRNA splicing, a process that allows a single gene to produce multiple mRNA isoforms, which in many cases encode functionally distinct proteins. In this pathway, SRPK1 was a downstream target of Akt, also known as protein kinase B. Akt- activated SRPK1 moves to the nucleus to induce its targeted splicing factors.

In their latest paper, Fu and colleagues report that SRPK1 was found to act as a because when ablated or removed from mouse embryonic fibroblasts, unwanted cell transformation occurred. Unexpectedly, when SRPK1 was overexpressed in mouse cells, tumor development also happened.

"To my knowledge, this is the first time it has been shown that a signal kinase behaves as a tumor suppressor or a promoter, depending upon its abundance in the same cell" said Fu. "The point is that too much or too little are both bad."

Such contrary phenomena are due to a surprising role of SRPK1 in regulating the activity of Akt via a specific Akt phosphatase discovered earlier by Alexandra C. Newton, PhD, professor of pharmacology at UC San Diego. The Akt phosphatase cannot find Akt when there is too little SRPK1 to assist, and the phosphatase is tied up when there is too much SRPK1. In both cases, the result is a dampening of Akt inactivation.

As Akt plays a key role in many , such as glucose metabolism, apoptosis, proliferation and all key aspects of , the elucidated mechanism provides a critical insight into tumorigenesis in humans. Indeed, compared to normal cells, many tumors show SRPK1 overexpression while others display reduced expression.

The findings may have future therapeutic implications, but Fu said the challenges remain daunting. "Most tumors show SRPK1 overexpression, so it may be possible to treat certain cancers with a specific SRPK1 inhibitor. This has been already demonstrated by others. But suppressing a not related to SRPK1 overexpression could actually stimulate that cancer."

Explore further: Enzyme offers new therapeutic target for cancer drugs

Related Stories

Enzyme offers new therapeutic target for cancer drugs

June 21, 2012
Researchers at the University of California, San Diego School of Medicine have uncovered a new signal transduction pathway specifically devoted to the regulation of alternative RNA splicing, a process that allows a single ...

Protein kinase Akt identified as arbiter of cancer stem cell fate, paper reports

December 20, 2012
(Medical Xpress)—The protein kinase Akt is a key regulator of cell growth, proliferation, metabolism, survival, and death. New work on Akt's role in cancer stem cell biology from the lab of senior author Honglin Zhou, MD, ...

Researchers find more clues to causes of breast cancer

October 27, 2011
Publishing in the current issue of The Journal of Biological Chemistry (Vol. 286, No 43), researchers at Moffitt Cancer Center in Tampa, Fla., have discovered additional mechanisms of "Akt" activation and suggest a component ...

Skp2 activates cancer-promoting, glucose-processing Akt

May 25, 2012
HER2 and its epidermal growth factor receptor cousins mobilize a specialized protein to activate a major player in cancer development and sugar metabolism, scientists report in the May 25 issue of Cell.

Recommended for you

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

How CD44s gives brain cancer a survival advantage

July 19, 2017
Understanding the mechanisms that give cancer cells the ability to survive and grow opens the possibility of developing improved treatments to control or cure the disease. In the case of glioblastoma multiforme, the deadliest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.