Researchers develop new dichloroacetate formulation for cancer treatment

April 16, 2014 by Jessica Luton, University of Georgia
Researchers develop new dichloroacetate formulation for cancer treatment
Shanta Dhar, right, and Sean Marrache

Health forums were abuzz in 2007 with news that a simple, inexpensive chemical may serve as a viable treatment to many forms of cancer. The drug dichloroacetate, or DCA, was touted as a cure-all, but after years of work, scientists are still searching for ways to make the unique treatment as effective as possible.

Now, researchers at the University of Georgia have discovered a new way to deliver this drug that may one day make it a viable treatment for numerous forms of cancer. They published their findings in the American Chemical Society's journal ACS Chemical Biology.

"DCA shows great promise as a potential , but the drug doesn't find and attack very efficiently in the doses researchers are testing," said Shanta Dhar, an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences. "We have developed a new compound based on DCA that is three orders of magnitude more potent than standard treatments."

Every cell in the body needs energy to divide and grow, and most of them do this by breaking down sugar. When cells misbehave, they are normally deprived of their food and die in a process called apoptosis.

Cancerous cells, however, find a way around the natural order by discovering other sources of energy. Dhar's technology, which she calls Mito-DCA, destroys the cancer by focusing on a part of the cell called mitochondria, commonly known as the powerhouse of cells because they generate most of the cell's chemical energy.

"By targeting the mitochondria, we can force cancerous cells to die just as regular malfunctioning cells would," said Dhar, who is part of the UGA Cancer Center. "But the drug we have developed affects only cancerous cells, leaving undisturbed."

In their experiments, Dhar and her research team exposed cancer cells to Mito-DCA. The results showed that the engineered chemical substance was able to switch the glycolysis-based metabolism of cancer cells to glucose oxidation, meaning that the cancer cells can once again die via apoptosis.

Mito-DCA also suppressed the production of lactic acid in , which allows them to avoid detection by the body's immune system. With this cloaking device damaged, the body's own T-cells are better able to recognize tumors and eliminate them.

While the UGA researchers' model focused specifically on prostate cancer, Dhar is hopeful that their technique may prove useful for other forms of cancer.

"This is only the beginning of this project," she said. "We will continue to test Mito-DCA and find new avenues for treatment."

Explore further: New aspirin-based prodrug may prevent damage caused by chemotherapy

More information: The full paper is available online: pubs.acs.org/doi/ipdf/10.1021/cb400944y

Related Stories

New aspirin-based prodrug may prevent damage caused by chemotherapy

January 10, 2014
(Medical Xpress)—Researchers at the University of Georgia have developed a new prodrug that promises to reduce many of the negative side effects caused by cisplatin, a commonly prescribed chemotherapy treatment.

How tumors become resistant to drugs, and how process can be reversed to inhibit cancer growth

April 10, 2014
Researchers at the Hebrew University of Jerusalem's Faculty of Medicine have discovered a process whereby tumor cells become resistant to specific drugs, a finding that could significantly influence how anti-cancer drugs ...

New drug raises potential for cancer treatment revolution

March 21, 2014
(Medical Xpress)—A revolution in cancer treatment could soon be underway following a breakthrough that may lead to a dramatic improvement in cancer survival rates. A new study at the University of Warwick, published today ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.