Factor present in gestational and type 2 diabetes could provide new treatment options

April 1, 2014, Cell Press
Blood glucose monitoring. Credit: Wikipedia

New research reveals that both pregnant women with diabetes and with type 2 diabetics have high levels of a fat metabolite that impairs pancreatic cells from secreting insulin. The findings, which are published in the April 1 issue of the Cell Press journal Cell Metabolism, suggest that blocking the effects of this fat metabolite may help prevent and treat diabetes.

In nearly one-fifth of pregnancies, can arise (called ), and when this happens, it puts the woman at an increased risk for developing later in life. To gain better insights into the shared mechanisms behind these two types of diabetes, researchers in Dr. Michael Wheeler's lab at the University of Toronto examined more than 340 molecules in blood samples from individuals with gestational diabetes, individuals with type 2 diabetes, and individuals without diabetes. The researchers used a metabolomics approach, which involves the study of chemical processes involving metabolites.

The team found that the blood of both gestational and type 2 diabetic patients contained a remarkable number of changed metabolites, including sugars, amino acids, and fats, compared with samples from nondiabetic controls. One particular fat metabolite, called CMPF, was dramatically increased in both gestational and type 2 diabetic individuals compared to those without diabetes. Experiments in mice showed that this increased concentration of CMPF caused a decrease in insulin secretion from beta cells in the pancreas, which led to the development of diabetes.

More detailed mechanistic experiments revealed that CMPF enters a beta cell through what's called organic anion transporter 3 (OAT3), and once inside the cell it causes oxidative stress and other negative effects. Next, the researchers found that the effects of CMPF could be prevented through either blocking the transport of CMPF into insulin-producing beta cells or treatment with antioxidants.

"Based on our findings we believe that CMPF and its transporter OAT3 represent novel targets for prevention and treatment of diabetes," says first author Kacey Prentice. "If we can reduce levels of CMPF in the blood, or prevent CMPF from entering the beta cell through blockage of OAT3, we believe that we can preserve beta cell function and prevent the beta cell failure that ultimately causes diabetes."

According to Prentice, it is important to note that the treatment of gestational diabetes is a very sensitive topic due to potential risks to both the mother and the developing fetus. "Due to this, we believe the prevention and treatment of type 2 diabetes is a more realistic and widely acceptable goal; however, CMPF has great potential for use as a biomarker of both conditions."

Explore further: Researchers find new pathway connected to type 2 diabetes

More information: Prentice et al.: "CMPF is Elevated in Diabetes and Induces Beta Cell Dysfunction." Cell Metabolism, dx.doi.org/10.1016/j.cmet.2014.03.008

Related Stories

Researchers find new pathway connected to type 2 diabetes

March 19, 2014
Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Loss of function of a single gene linked to diabetes in mice

January 4, 2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Study identifies immune cells that promote growth of beta cells in type 1 diabetes

September 27, 2013
Joslin researchers have identified immune cells that promote growth of beta cells in type 1 diabetes. This study provides further evidence of a changed role for immune cells in type 1 diabetes pathology. The study appears ...

Researchers identify a metabolite as a biomarker of diabetes risk

September 16, 2013
Type 2 diabetes (T2D) is the most common form of diabetes and is associated with many complications. T2D is preventable through weight control and exercise; however, many individuals are unaware that they are at risk and ...

The role of beta cell regeneration in type 2 diabetes

October 10, 2012
The World Health Organization (WHO) has declared type 2 diabetes as the epidemic of the 21st century. A study is focusing on understanding the mechanisms underlying insulin resistance and the role of beta-cell regeneration.

Diabetes researchers track cells' ability to regenerate

March 19, 2014
Vanderbilt University scientists have found evidence that the insulin-secreting beta cells of the pancreas, which are either killed or become dysfunctional in the two main forms of diabetes, have the capacity to regenerate.

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.