Researchers trace HIV evolution in North America (Update)

April 24, 2014
Zabrina Brumme's health sciences lab. Members of Zabrina Brumme's health sciences lab. (l-r) Laura Cotton, Zabrina Brumme, Anh Q. Le, Xiaomei (Tallie) Kuang

A study tracing the evolution of HIV in North America involving researchers at Simon Fraser University has found evidence that the virus is slowly adapting over time to its human hosts. However, this change is so gradual that it is unlikely to have an impact on vaccine design.

"Much research has focused on how HIV adapts to antiviral drugs—we wanted to investigate how HIV adapts to us, its human hosts, over time," says lead author Zabrina Brumme, an assistant professor in SFU's Faculty of Health Sciences.

The study, published today in PLOS Genetics, was led by Brumme's lab in collaboration with scientists at the BC Centre for Excellence in HIV/AIDS, UBC, and sites across the U.S. including Harvard University, the New York Blood Center and the San Francisco Department of Public Health.

"HIV adapts to the immune response in reproducible ways. In theory, this could be bad news for host immunity—and vaccines—if such mutations were to spread in the population," says Brumme. "Just like transmitted drug resistance can compromise treatment success, transmitted immune escape mutations could erode our ability to naturally fight HIV."

Researchers characterized HIV sequences from patients dating from 1979, the beginning of the North American HIV epidemic, to the modern day.

The team reconstructed the epidemic's ancestral HIV sequence and from there, assessed the spread of immune escape mutations in the population.

"Overall, our results show that the virus is adapting very slowly in North America," says Brumme. "In parts of the world harder hit by HIV though, rates of adaptation could be higher."

The study ends with a message of hope, Brumme adds. "We already have the tools to curb HIV in the form of treatment—and we continue to advance towards a vaccine and a cure. Together, we can stop HIV/AIDS before the virus subverts host immunity through population-level adaptation."

Numerous SFU researchers contributed to the analysis, which required the careful recovery of viral RNA from historic specimens followed by laboratory culture. A trio of SFU graduate students, including health sciences student Laura Cotton, shared the lead author role.

"It was painstaking work," says Cotton, "but it was fascinating to study these isolates in the lab, knowing that they had played an important role in the history of HIV on our continent."

Explore further: Scientists find the invisibility cloak that shields HIV-1 from the immune system

More information: Cotton LA, Kuang XT, Le AQ, Carlson JM, Chan B, et al. (2014) Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic. PLoS Genet 10(4): e1004295. DOI: 10.1371/journal.pgen.1004295

Related Stories

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Harnessing immune cells' adaptability to design an effective HIV vaccine

March 21, 2013
In infected individuals, HIV mutates rapidly to escape recognition by immune cells. This process of continuous evolution is the main obstacle to natural immunity and the development of an effective vaccine. A new study published ...

HIV vaccine research must consider various immune responses

April 3, 2014
Last year, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, held a scientific meeting to examine why certain investigational HIV vaccines may have increased susceptibility ...

Transplant drugs may help wipe out persistent HIV infections

April 3, 2014
New research suggests that drugs commonly used to prevent organ rejection after transplantation may also be helpful for combating HIV. The findings, which are published in the American Journal of Transplantation, suggest ...

Cutting HIV in drug users can benefit others' AIDS mortality

March 26, 2014
(HealthDay)—Efforts to curb HIV transmission among people who inject drugs (PWID) and non-injecting drug users (NIDUs) may reduce AIDS and AIDS-related mortality among heterosexuals, according to a study published in the ...

HIV treatment while incarcerated helped prisoners achieve viral suppression

March 31, 2014
Treating inmates for the human immunodeficiency virus (HIV) while they were incarcerated in Connecticut helped a majority of them achieve viral suppression by the time they were released.

Recommended for you

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.