Tissue stiffness linked to aggressive type of breast cancer

April 16, 2014 by Erin Vollick
Assistant Professor Penney Gilbert. Credit: Erin Vollick

(Medical Xpress)—A new study has linked the stiffness of breast tissue to the progression of a particularly aggressive form of breast cancer. Published in Nature Medicine this month, the study may help clinicians differentiate between aggressive forms of the disease, which tend to have a poor prognosis, and less deadly forms.

University of Toronto Assistant Professor Penney Gilbert, a core faculty member at the University of Toronto's Institute of Biomaterials & Biomedical Engineering and the Donnelly Centre for Cellular & Biomolecular Research was involved in the two studies that led to this discovery.

Back in 2010, Gilbert and fellow researchers of Professor Valerie Weaver's laboratory at the University of California San Francisco (UCSF) discovered a vital link between the presence of a particular protein, HOXA9 and production of the BRCA1 protein. When mutated, the BRCA1 protein malfunctions and can trigger particularly deadly forms of breast cancer.

"BRCA1 mutation is one of a handful of known heritable genetic mutations that greatly increase the risk of developing breast cancer. In recent news, when Angelina Jolie learned that she was a carrier of this mutation, she underwent a double mastectomy as a preventative measure to ward off the aggressive breast cancer," says Gilbert.

The researchers, though, found that HOXA9 plays a vital role in the suppression of the disease.

"HOXA9 makes more BRCA1, which [in its non-mutated state] is a tumor suppressor," Gilbert says, "and that allowed us to understand why a population of women who didn't have BRCA1 mutation could have breast tumors that very much resembled those with a BRCA1 mutation. Low levels of HOXA9 were most commonly observed in these types of ."

The study concluded that low HOXA9 levels correlated with higher likelihood of metastasis as well as a significantly higher incidence of relapse.

"So the question is," adds Gilbert, "why do they lose HOXA9 expression?"

As it turns out, the mechanical properties of the tissue environment – in particular, its stiffness – may play a major role in the progression of the disease.

Following the 2010 study, Gilbert worked together with Janna Mouw, an associate specialist in the Weaver lab and first author of the Nature Medicine study, to show that HOXA9 protein expression – the protein that leads to tumor suppressing BRCA1 expression – was lost in stiff tissue environments.

"A specific microRNA (miR-18a), which is neither a protein nor a hormone but another type of small molecule, appears to dial down the levels of several breast tumor suppressors, including HOXA9," Gilbert explains, which in turn blocks production of BRCA1.

The findings are of particular clinical interest, as it may lead to quicker identification of the difficult-to-treat and aggressive breast cancer subtypes.

"This discovery of the molecular chain of events between tissue stiffening and progression may lead to new and more effective treatment strategies that target structural changes in breast cancers and other tumors," says Valerie Weaver, professor of surgery and director of UCSF's Center for Bioengineering and Tissue Regeneration, in a statement.

"Our study indicates that it isn't enough to treat the genetic defects," Gilbert argues. "We need to look at how to return the environment surrounding the tumor to its normal softness. It's important for us to consider both the genetic and the biomechanical aspects of tumor initiation."

Explore further: Mechanical forces driving breast cancer lead to key molecular discovery

Related Stories

Mechanical forces driving breast cancer lead to key molecular discovery

March 27, 2014
The stiffening of breast tissue in breast-cancer development points to a new way to distinguish a type of breast cancer with a poor prognosis from a related, but often less deadly type, UC San Francisco researchers have found ...

Study ties breast gene to high-risk uterine cancer

March 24, 2014
Women with a faulty breast cancer gene might face a greater chance of rare but deadly uterine tumors despite having their ovaries removed to lower their main cancer risks, doctors are reporting.

Discovery signals new treatment for those at high risk of breast and ovarian cancer

March 27, 2014
Cancer researchers at Queen's University Belfast have made a breakthrough which could signal new treatments for women at high risk of breast and ovarian cancer.

Research shows breast cancer gene affects brain development

March 18, 2014
(Medical Xpress)—The BRCA1 gene, known for its role in suppressing the growth of breast and ovarian tumors, could be necessary for brain development. In a study appearing in the Proceedings of the National Academy of Sciences, ...

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.