Research uncovers DNA looping damage tied to HPV cancer

April 16, 2014
This illustration depicts how cancer-causing genes or disrupting cancer-suppressing genes can be amplified or disrupted when human papillomavirus is inserted into human DNA. This havoc creates chromosomal instability, a hallmark of cancer development, according to a recent study led by David Symer, M.D., Ph.D., assistant professor of molecular virology, immunology and medical genetics at The Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Credit: Symer

It's long been known that certain strains of human papillomavirus (HPV) cause cancer. Now, researchers at The Ohio State University have determined a new way that HPV might spark cancer development – by disrupting the human DNA sequence with repeating loops when the virus is inserted into host-cell DNA as it replicates.

Worldwide, HPV causes about 610,000 cases of annually, accounting for about five percent of all cancer cases and virtually all cases of cervical cancer. Yet, the mechanisms behind the process aren't yet completely understood.

This study, recently published in the journal Genome Research, leveraged the massive computational power of the Ohio Supercomputer Center (OSC) systems. The researchers employed whole-genome sequencing, genomic alignment and other molecular analysis methods to examine ten cancer-cell lines and two head and neck tumor samples from patients – each sequence comprising the three billion chemical units within the human genetic instruction set.

"Our sequencing data showed in vivid detail that HPV can damage host-cell genes and chromosomes at sites of viral insertion," said co-senior author David Symer, M.D., Ph.D., assistant professor of , immunology and medical genetics at Ohio State's Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

Abnormal HPV "looping" results in extraordinary damage to host chromosomes at sites of human papillomavirus DNA insertion, according to a recent study that utilized whole-genome sequencing and the computational systems of the Ohio Supercomputer Center. The study was recently published by a team of researchers led by David Symer, M.D., Ph.D., assistant professor of molecular virology, immunology and medical genetics at The Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Credit: Symer/OSU

"HPV can act like a tornado hitting the genome, disrupting and rearranging nearby host-cell genes," he said. "This can lead to overexpression of cancer-causing genes in some cases, or it can disrupt protective tumor-suppressor genes in others. Both kinds of damage likely promote the development of cancer."

The study's first author Keiko Akagi, Ph.D., a bioinformatics expert and research assistant professor of molecular virology, immunology and medical genetics at OSUCCC – James, utilized the computational capabilities of OSC's HP-built Intel Xeon cluster. The 8,300+ cores of the Oakley Cluster offer Ohio researchers a total peak performance of 154 teraflops – tech speak for making 154 trillion calculations per second – and OSC's Mass Storage System provides them with more than 2 petabytes of storage.

"We observed fragments of the host-cell genome to be removed, rearranged or increased in number at sites of HPV insertion into the genome," said co-senior author Maura Gillison, M.D., Ph.D., professor of medicine, epidemiology and otolaryngology and the Jeg Coughlin Chair of Cancer Research at OSUCCC – James. "These remarkable changes in host genes were accompanied by increases in the number of HPV copies in the host cell, thereby also increasing the expression of viral E6 and E7, the cancer-promoting genes."

Cancer-causing types of HPV produce two viral proteins, called E6 and E7, which are essential for the development of cancer, but are not alone sufficient to cause cancer. Additional alterations in host-cell genes are necessary for cancer to develop, which is where the destabilizing loops might play a significant role; genomic instability is a hallmark of human cancers, including the HPV virus.

"Our study reveals new and interesting information about what happens to HPV in the 'end game' in cancers," Symer says. "Overall, our results shed new light on the potentially critical, catastrophic steps in the progression from initial viral infection to development of an HPV-associated cancer."

Explore further: HPV can damage genes and chromosomes directly, whole-genome sequencing study shows

Related Stories

HPV can damage genes and chromosomes directly, whole-genome sequencing study shows

November 7, 2013
The virus that causes cervical, head and neck, anal and other cancers can damage chromosomes and genes where it inserts its DNA into human DNA, according to a new study led by researchers at The Ohio State University Comprehensive ...

Number of cancer stem cells might not predict outcome in HPV-related oral cancers

January 22, 2014
(Medical Xpress)—New research from The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that it may be the quality ...

Researchers design drug to restore cell suicide in HPV-related head and neck cancer

April 8, 2013
Researchers have discovered a new mechanism by which the human papilloma virus (HPV) causes head and neck cancer, and they have designed a drug to block that mechanism. Though further research is needed, the new agent might ...

Study identifies a likely key driver of colorectal cancer development and progression

April 14, 2014
A new study identifies a molecule that is a probable driving force in colorectal cancer and suggests that the molecule could be an important target for colorectal cancer treatment and a valuable biomarker of tumor progression.

Hidden strains of HPV found in 'virus-negative' genital warts

July 11, 2013
There are 170 established HPV types. Cancerous human papillomavirus (HPV) viruses are the main cause of cervical cancer, and are found in close to 100% of cervical tumors.

Oral HPV infection, HPV-related cancers more common in men

January 26, 2012
Oral HPV infection is more common among men than women, explaining why men are more prone than women to develop an HPV related head and neck cancer, according to a study presented at the Multidisciplinary Head and Neck Cancer ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.