Toward unraveling the Alzheimer's mystery

April 23, 2014
Toward unraveling the Alzheimer's mystery

Getting to the bottom of Alzheimer's disease has been a rapidly evolving pursuit with many twists, turns and controversies. In the latest crook in the research road, scientists have found a new insight into the interaction between proteins associated with the disease. The report, which appears in the journal ACS Chemical Neuroscience, could have important implications for developing novel treatments.

Witold K. Surewicz, Krzysztof Nieznanski and colleagues explain that for years, research has suggested a link between protein clumps, known as amyloid-beta plaques, in the brain and the development of Alzheimer's, a devastating condition expected to affect more than 10 million Americans by 2050. But how they inflict their characteristic damage to nerve cells and memory is not fully understood. Recent studies have found that a so-called binds strongly to small aggregates of amyloid-beta peptides. But the details of how this attachment might contribute to disease—and approaches to treat it—are still up for debate. To resolve at least part of this controversy, Surewicz's team decided to take a closer look.

Contrary to previous studies, they found that the prion protein also attaches to large fibrillar clumps of amyloid-beta and do not break them down into smaller, more harmful pieces, as once thought. This finding bodes well for researchers investigating a novel approach to treating Alzheimer's—using prion--based compounds to stop these smaller, toxic amyloid-beta pieces from forming, the authors conclude.

Explore further: New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

More information: "Interaction between Prion Protein and Aβ Amyloid Fibrils Revisited" ACS Chem. Neurosci., Article ASAP. DOI: 10.1021/cn500019c

Abstract
Recent studies indicate that the pathogenesis of Alzheimer disease may be related to the interaction between prion protein (PrP) and certain oligomeric species of Aβ peptide. However, the mechanism of this interaction remains unclear and controversial. Here we provide direct experimental evidence that, in addition to previously demonstrated binding to Aβ oligomers, PrP also interacts with mature Aβ fibrils. However, contrary to the recent claim that PrP causes fragmentation of Aβ fibrils into oligomeric species, no evidence for such a disassembly could be detected in the present study. In contrast, our data indicate that the addition of PrP to preformed Aβ fibrils results in a lateral association of individual fibrils into larger bundles. These findings have potentially important implications for understanding the mechanism by which PrP might impact Aβ toxicity as well as for the emerging efforts to use PrP-derived compounds as inhibitors of Aβ-induced neurodegeneration.

Related Stories

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Early detection of Alzheimer's disease made possible by analyzing spinal fluid

March 20, 2014
Researchers have shown that they can detect tiny, misfolded protein fragments in cerebrospinal fluid taken from patients. Such fragments have been suggested to be the main culprit in Alzheimer's disease. The findings reported ...

Modified stem cells offer potential pathway to treat Alzheimer's disease

April 15, 2014
UC Irvine neurobiologists have found that genetically modified neural stem cells show positive results when transplanted into the brains of mice with the symptoms and pathology of Alzheimer's disease. The pre-clinical trial ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.