Modified stem cells offer potential pathway to treat Alzheimer's disease

April 15, 2014, University of California, Irvine
UC Irvine neurobiologist Mathew Blurton-Jones helped find that increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, led to lower activity in Alzheimer's disease brains. Credit: UC Irvine

UC Irvine neurobiologists have found that genetically modified neural stem cells show positive results when transplanted into the brains of mice with the symptoms and pathology of Alzheimer's disease. The pre-clinical trial is published in the journal Stem Cells Research and Therapy, and the approach has been shown to work in two different mouse models.

Alzheimer's disease, one of the most common forms of dementia, is associated with accumulation of the protein amyloid-beta in the in the form of plaques. While the search continues for a viable treatment, scientists are now looking into non-pharmaceutical ways to slow onset of this disease.

One option being considered is increasing the production of the enzyme neprilysin, which breaks down amyloid-beta, and shows lower activity in the brains of people with Alzheimer's disease. Researchers from UC Irvine investigated the potential of decreasing amyloid-beta by delivering neprilysin to mice brains.

"Studies suggest that neprilysin decreases with age and may therefore influence the risk of Alzheimer's disease," said Mathew Blurton-Jones, an assistant professor of neurobiology & behavior. "If amyloid accumulation is the driving cause of Alzheimer's disease, then therapies that either decrease amyloid-beta production or increase its degradation could be beneficial, especially if they are started early enough."

The brain is protected by a system called the blood-brain-barrier that restricts access of cells, proteins, and drugs to the brain. While the blood-brain-barrier is important for brain health, it also makes it challenging to deliver therapeutic proteins or drugs to the brain. To overcome this, the researchers hypothesized that stem cells could act as an effective delivery vehicle. To test this hypothesis the brains of two different mouse models (3xTg-AD and Thy1-APP) were injected with genetically modified that over-expressed neprilysin. Most studies up to now have only looked into a single model, and there has been found to be variation in results between models.

These genetically modified stem cells were found to produce 25-times more neprilysin than control neural stem cells, but were otherwise equivalent to the control cells. The genetically modified and control stem cells were then transplanted into the hippocampus or subiculum of the mice brains – two areas of the brain that are greatly affected by Alzheimer's disease. The mice transplanted with genetically modified stem cells were found to have a significant reduction in amyloid-beta plaques within their brains compared to the controls. The effect remained even one month after stem cell transplantation. This new approach could provide a significant advantage over unmodified neural stem cells because neprilysin-expressing cells could not only promote the growth of brain connections but could also target and reduce amyloid-beta pathology.

Before this can be investigated in humans, more work needs to be done to see if this affects the accumulation of soluble forms of amyloid-beta. Further investigation is also needed to determine whether this new approach improves cognition more than the transplantation of un-modified neural .

"Every mouse model of Alzheimer's disease is different and develops varying amounts, distribution, and types of amyloid-beta pathology," Blurton-Jones said. "By studying the same question in two independent transgenic models, we can increase our confidence that these results are meaningful and broadly applicable to Alzheimer's disease. But there is clearly a great deal more research needed to determine whether this kind of approach could eventually be translated to the clinic."

Explore further: Innovative method to treat Alzheimer's in mice

Related Stories

Innovative method to treat Alzheimer's in mice

April 1, 2013
Researchers from the RIKEN Brain Science Institute report that they successfully used a virus vector to restore the expression of a brain protein and improve cognitive functions, in a mouse model of Alzheimer's disease.

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Study breaks blood-brain barriers to understanding Alzheimer's

December 13, 2013
A study in mice shows how a breakdown of the brain's blood vessels may amplify or cause problems associated with Alzheimer's disease. The results published in Nature Communications suggest that blood vessel cells called pericytes ...

Alzheimer's in a dish: Stem cells from patients offer model and drug-discovery platform for early-onset form of disease

March 4, 2014
Harvard stem cell scientists have successfully converted skins cells from patients with early-onset Alzheimer's into the types of neurons that are affected by the disease, making it possible for the first time to study this ...

Researchers inhibit brain production of beta-amyloid

December 6, 2013
(Medical Xpress)—A discovery by Emory Alzheimer's Disease Research Center and Scripps Research Institute scientists could lead to drugs that slow Alzheimer's disease progression.

Recommended for you

Energy storehouses in the brain may be source of Alzheimer's, targets of new therapy

January 23, 2018
Alzheimer's disease, a severely debilitating and ultimately fatal brain disorder, affects millions worldwide. To date, clinical efforts to find a cure or adequate treatment have met with dispiriting failure.

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.