Learning brakes in the brain

May 13, 2014, Max Planck Society
Dendrite of an amygdala principal neuron with dendritic spines (white). Inhibitory synaptic contacts are shown in red. Credit: MPI f. Brain Research/ J. Letzkus

A brain capable of learning is important for survival: only those who learn can endure in the natural world. When it learns, the brain stores new information by changing the strength of the junctions that connect its nerve cells. This process is referred to as synaptic plasticity. Scientists at the Max-Planck Institute for Brain Research in Frankfurt, working with researchers from Basel, have demonstrated for the first time that inhibitory neurons need to be at least partly blocked during learning. This disinhibition is a bit like taking the foot off the brake in a car: if the inhibitory neurons are less active, learning is accelerated.

Learning is often a matter of timing: different stimuli become strongly associated if they occur in close succession. The Max Planck scientists made use of this phenomenon in conditioning experiments in which mice learned to react to a tone. For this learning effect to occur, the synapses of the so-called principal neurons in the amygdala need to become more sensitive. The researchers concentrated on two types of which produce the proteins parvalbumin and somatostatin and inhibit the principal neurons of the amygdala.

The results obtained by the Max Planck researchers show that both cell types are inhibited during different phases of the learning process. This disinhibition enhances the activation of the principal neurons. Moreover, the scientists were able to control the learning behaviour of the mice through the use of optogenetics. In these experiments, they equipped both types of inhibitory neurons in the amygdala with light-sensitive ion channels, allowing them to use light to switch the neurons on or off as required. "When we prevent disinhibition, the mice learn less well. In contrast, enhancing the disinhibition leads to intensified learning", says Johannes Letzkus from the Max Planck Institute for Brain Research. Next, the scientists aim to identify the nerve pathways which are involved in disinhibition.

Explore further: Neuroscientists identify class of cortical inhibitory neurons that specialize in disinhibition

More information: Steffen B. E. Wolff, Jan Gründemann, Philip Tovote, Sabine Krabbe, Gilad A. Jacobson, Christian Müller, Cyril Herry, Ingrid Ehrlich, Rainer W. Friedrich, Johannes J. Letzkus* and Andreas Lüthi. "Amygdala interneuron subtypes control fear learning through disinhibition." Nature; online advance publication, 11 May 2014

Related Stories

Neuroscientists identify class of cortical inhibitory neurons that specialize in disinhibition

October 6, 2013
New research now reveals that one class of inhibitory neurons—called VIP interneurons—specializes in inhibiting other inhibitory neurons in multiple regions of cortex, and does so under specific behavioral conditions. ...

Researchers discover how inhibitory neurons behave during critical periods of learning

August 25, 2013
We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.

Neuroscientists pinpoint location of fear memory in amygdala

January 28, 2013
A rustle of undergrowth in the outback: it's a sound that might make an animal or person stop sharply and be still, in the anticipation of a predator. That "freezing" is part of the fear response, a reaction to a stimulus ...

Synapses remain stable if their components grow in coordination with each other

April 16, 2014
Synapses are the points of contact at which information is transmitted between neurons. Without them, we would not be able to form thoughts or remember things. For memories to endure, synapses sometimes have to remain stable ...

Competing impairment of neurons governs pathology of a severe form of epilepsy

September 20, 2013
Dravet syndrome is a rare and severe form of epilepsy caused primarily by inherited loss-of-function mutations in a gene called SCN1A. This gene encodes a sodium ion channel known as Nav1.1 and is required for the proper ...

Scientists discover a new pathway for fear deep within the brain

February 12, 2014
Fear is primal. In the wild, it serves as a protective mechanism, allowing animals to avoid predators or other perceived threats. For humans, fear is much more complex. A normal amount keeps us safe from danger. But in extreme ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet May 22, 2014
http://medicalxpr...ain.html

The brain stores new information from repair of damage. See above link. What then follows is described by the research from the authors are reported here.

You can not learn 'well' or 'badly'. You can only learn what is not consistent.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.