Scientists discover a new pathway for fear deep within the brain

February 12, 2014
Scientists discover a new pathway for fear deep within the brain
A team of CSHL scientists have discovered a new neural circuit in the brain that directly links the site of fear memory with an area of the brainstem that controls behavior. Far-reaching neurons in the central amygdala, the location of fear memory in the brain seen here in red (middle panel), directly contact neurons in the brainstem, here in green (left). Credit: Bo Li, Cold Spring Harbor Laboratory

Fear is primal. In the wild, it serves as a protective mechanism, allowing animals to avoid predators or other perceived threats. For humans, fear is much more complex. A normal amount keeps us safe from danger. But in extreme cases, like post-traumatic stress disorder (PTSD), too much fear can prevent people from living healthy, productive lives. Researchers are actively working to understand how the brain translates fear into action. Today, scientists at Cold Spring Harbor Laboratory (CSHL) announce the discovery of a new neural circuit in the brain that directly links the site of fear memory with an area of the brainstem that controls behavior.

How does the brain convert an emotion into a behavioral response? For years, researchers have known that fear memories are learned and stored in a small structure in the brain known as the amygdala. Any disturbing event activates neurons in the lateral and then central portions of the amygdala. The signals are then communicated internally, passing from one group of neurons to the next. From there, they reach neurons in the brainstem, the action center for fear responses.

Last year, CSHL Associate Professor Bo Li and his colleagues were able to use new genetic techniques to determine the precise neurons in the central amygdala that control . His current research exploits new methods to understand how the central amygdala communicates fear memories to the areas of the brain that are responsible for action.

In work published today in The Journal of Neuroscience, Li and his team identify a group of long-range neurons that extend from the central amygdala. These neurons project to an area of the brainstem, known as the midbrain periaqueductal gray (PAG), that controls the .

Li and his colleagues explored how these long-range neurons participate in fear conditioning. They trained animals to associate a particular sound with a shock, conditioning the animals to fear the sound. In these animals, the activity of the long-range projection neurons in the central amygdala became enhanced.

"This study not only establishes a novel pathway for fear learning, but also identifies neurons that actively participate in ," says Li. "This new pathway can mediate the effect of the central directly, rather than signaling through other , as traditionally thought."

The next step for these researchers is to apply this knowledge to models of PTSD. "We are working to find out how these circuits behave in anxiety disorders, so that we can hopefully learn to control in diseases such as PTSD," says Li.

Explore further: Neuroscientists pinpoint location of fear memory in amygdala

More information: "Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala" appears online in The Journal of Neuroscience on February 12, 2014.

Related Stories

Neuroscientists pinpoint location of fear memory in amygdala

January 28, 2013
A rustle of undergrowth in the outback: it's a sound that might make an animal or person stop sharply and be still, in the anticipation of a predator. That "freezing" is part of the fear response, a reaction to a stimulus ...

Medial prefrontal cortex linked to fear response

December 4, 2013
(Medical Xpress)—In a new paper published in the current issue of Neuron, Harvard Medical School researchers at McLean Hospital report that increased activity in the medial prefrontal cortex of the brain is linked to decreased ...

Neuroscientists determine how treatment for anxiety disorders silences fear neurons

November 1, 2013
(Medical Xpress)—Excessive fear can develop after a traumatic experience, leading to anxiety disorders such as post-traumatic stress disorder and phobias. During exposure therapy, an effective and common treatment for anxiety ...

Where and how are fear-related behaviors and anxiety disorders controlled?

November 21, 2013
Using an approach combining in vivo recordings and optogenetic manipulations in mice, the researchers succeeded in showing that the inhibition of parvalbumin-expressing prefrontal interneurons triggers a chain reaction resulting ...

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Understanding fear means correctly defining fear itself, study concludes

February 4, 2014
Understanding and properly studying fear is partly a matter of correctly defining fear itself, New York University neuroscientist Joseph LeDoux writes in a new essay published in Proceedings of the National Academy of Sciences. ...

Recommended for you

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.