New genes identified may unlock mystery of keloid development

May 29, 2014

Researchers at Henry Ford Hospital in Detroit have uncovered previously unidentified genes that may be responsible for keloid scarring, a discovery that could unlock the mystery of keloid development and provide insight for more effective treatment.

"Much of the uncertainty surrounding keloids is rooted in there being no known cause for their development," says study lead author Lamont R. Jones, M.D., vice chair, Department of Otolaryngology-Head and Neck Surgery at Henry Ford.

"But it is believed that keloids have a genetic component given the correlation with family history, prevalence in twins, and its predisposition in darker skin."

Results from the study were presented this week at the American Academy of Facial Plastic and Reconstructive Surgery's 11th International Symposium in New York City.

Keloid scars form raised, firm skin areas that may become itchy, tender, and painful. Unlike regular scars, keloids do not subside over time and often extend outside the wound site.

Keloids most often occur on the chest, shoulders, earlobes (following ear piercing), upper arms and cheeks. The lowest rates of keloid formation have been documented in albinos and the highest seen in dark skinned individuals, especially in the African-American population.

Treatment for keloids includes cortisone injections, pressure dressings, silicone gels, surgery, cryosurgery (freezing), , or radiation therapy. A combination of treatments may be used, depending on the individual.

In some cases, keloids return after treatment, up to 50 to 100 percent of the time.

For the Henry Ford study, Dr. Jones and his colleagues used six fresh keloid samples and six fresh normal skin samples in which genome-wide profiling was previously done. This effort identified 190 statistically significant regions of DNA that were mapped to 152 keloid specific genes.

The 152 genes were uploaded into the Ingenuity Pathway Analysis software, which integrates genes and molecules that are part of the same biological functions or regulatory networks interacting together.

Among 152 unique genes, the researchers found 10 genes that demonstrated an increase of the cellular components and regulatory pathways important to the biological processes in keloid development.

In all, the researchers were able to show that certain keloid genomes are present in known bionetwork pathways involved in critical biological functioning and signaling events in the cell.

Dr. Jones notes the importance of this new information and how it can be used to "further refine the screening process for biological significance in hopes of better understanding the pathogenesis and molecular targeted therapy for keloid disease."

"By identifying the genetic cause, it may be possible to develop better treatments for keloids in the near future," he says.

Explore further: African-Americans 7 times more likely to have keloid scarring of the head, neck

Related Stories

African-Americans 7 times more likely to have keloid scarring of the head, neck

March 6, 2012
African Americans are seven times more likely than Caucasians to develop an excessive growth of thick, irregularly shaped and raised scarring on their skin – known as a keloid – following head and neck surgery, ...

Lasers deemed highly effective treatment for excessive scars

November 27, 2013
Current laser therapy approaches are effective for treating excessive scars resulting from abnormal wound healing, concludes a special topic paper in the December issue of Plastic and Reconstructive Surgery, the official ...

Study evaluates pressure device worn on the ear at night as treatment for scar tissue

August 15, 2011
A study of seven patients examined use of a pressure device worn overnight to supplement other therapy for auricular keloids (scar tissue buildup of the ear), as reported in an article published Online First today by Archives ...

Researchers identify genetic factors that may aid survival from brain cancer

May 12, 2014
A Henry Ford Hospital research team has identified specific genes that may lead to improved survival of glioblastoma, the most common and deadly form of cancerous brain tumor.

Study links 23 microRNAs to laryngeal cancer

September 13, 2011
A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.