Study identifies mechanism by which intestinal enzyme maintains microbial balance

May 9, 2014, Massachusetts General Hospital

Massachusetts General Hospital (MGH) investigators have identified the mechanism by which an enzyme produced in the intestinal lining helps to maintain a healthy population of gastrointestinal microbes. In their report in American Journal of Physiology – Gastrointestinal and Liver Physiology, the research team describes finding that intestinal alkaline phosphatase (IAP) promotes the growth of beneficial bacteria by blocking the growth-inhibiting action of adenosine triphosphate (ATP) – an action first described in this paper – within the intestine.

"We found that ATP is a natural inhibitor of in our intestines and that IAP promotes the growth of 'good' bacteria by blocking ATP," says Richard Hodin, MD, of the MGH Department of Surgery, senior author of the report which has been released online. "By helping to keep these healthy bacteria happy, IAP protects us against dangerous pathogens that can get the upper hand when the balance is disrupted."

The beneficial bacteria and other microbes that normally populate the human digestive system contribute to the digestive process and also prevent the proliferation of any disease-causing bacteria that may be present. A drop in the number of beneficial species – which may be caused by antibiotic treatment, poor nutrition or other health conditions – can allow the population of harmful bacteria to rise, contributing to serious medical problems including chronic diarrhea from pathogenic species such as C. difficile, inflammatory bowel disease, and metabolic syndrome.

Previous research by Hodin's team found that IAP keeps pathogenic bacteria in the gastrointestinal tract from passing through the intestinal wall, and a 2010 study in mice revealed that the enzyme plays an important role in maintaining levels of , including restoring levels reduced by antibiotic treatment. However, that study also showed that IAP does not directly promote bacterial growth, leaving exactly how the enzyme helps maintain the microbial population an open question that the current study was designed to investigate.

A series of experiments first confirmed that mice lacking intestinal IAP had significant reductions in populations of several important bacterial species. Hypothesizing that IAP may act by blocking a growth-inhibiting activity of one of its target molecules, the researchers tested how well bacteria in stool samples would grow in the presence of four known IAP targets. Among the tested targets, only ATP significantly reduced bacterial growth; and ATP's inhibitory effects were reversed by application of IAP. Best known as the primary energy supply within cells, ATP also acts as a signaling molecule both inside and outside of cells, and this study is the first to identify such an activity for ATP within the gastrointestinal system.

Experiments in living mice revealed that IAP knockout animals had 10 times the normal level of ATP within their intestines and that fasting animals, in which IAP levels would be expected to drop, also had elevated intestinal ATP. Adding ATP to the intestines of mice in which IAP activity had been inhibited reduced levels of beneficial E.coli bacteria in the animals' digestive systems. Altogether the results show that ATP inhibits the growth of intestinal bacteria in mice and that IAP's growth-promoting effects result from the enzyme's inactivation of ATP and possibly of related molecules.

"Now we need to find out whether IAP also promotes the growth of beneficial intestinal bacteria in humans," says Hodin, who is a professor of Surgery at Harvard Medical School. "If it does, IAP-based therapies could offer a simple and safe approach to treating the millions of patients who suffer serious health problems caused by disruptions to intestinal microbial balance."

Explore further: Adding intestinal enzyme to diets of mice appears to prevent, treat metabolic syndrome

Related Stories

Adding intestinal enzyme to diets of mice appears to prevent, treat metabolic syndrome

April 8, 2013
Feeding an intestinal enzyme to mice kept on a high-fat diet appears to prevent the development of metabolic syndrome – a group of symptoms associated with type 2 diabetes, cardiovascular disease and fatty liver – and ...

Risk factor for life-threatening disease in preemies identified

January 16, 2014
Many premature infants suffer a life-threatening bowel infection called necrotizing enterocolitis (NEC).

Breastfeeding promotes the growth of beneficial bacteria in the gut

May 7, 2014
A number of studies have shown that breastfed babies grow slightly slower and are slightly slimmer than children who are fed with infant formula. Children who are breastfed also have a slightly lower incidence of obesity, ...

Newly diagnosed Crohn's disease patients show imbalance in intestinal microbial population

March 12, 2014
A multi-institutional study led by investigators from Massachusetts General Hospital (MGH) and the Broad Institute has identified how the intestinal microbial population of newly diagnosed Crohn's disease patients differs ...

Study finds molecular link between gut microbes and intestinal health

November 3, 2013
It's well established that humans maintain a symbiotic relationship with the trillions of beneficial microbes that colonize their bodies. These organisms, collectively called the microbiota, help digest food, maintain the ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gzurbay
not rated yet May 09, 2014
Of course this is very important information, - that will be totally ignored by the vast majority of doctors who are still hanging on to their old medical school training. These same doctors know of ONE treatment for muscle problems ( muscle relaxants ) and still believe ulcers are caused by stomach acid.....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.