Select sodium channel blockers have anti-diabetic effects

May 15, 2014
Select sodium channel blockers have anti-diabetic effects

(HealthDay)—Blockade of voltage-gated sodium channels (NaChs) in pancreatic α cells has anti-diabetic effects, according to research published online May 8 in Diabetes.

Arvinder K. Dhalla, Ph.D., of Gilead Sciences in Fremont, Calif., and colleagues tested the hypothesis that the mechanism by which ranolazine, a NaCh blocker approved for use in angina, exerts anti-diabetic effects is inhibition of glucagon release through blockade of sodium channels in α cells.

The researchers found that ranolazine causes blockade of in pancreatic α cells, inhibits their , and reduces the release of glucagon. The release of glucagon in human pancreatic islets is mediated by the Nav1.3 isoform. In animal models, ranolazine and a more selective sodium channel blocker, GS-458967, reduced postprandial and basal glucagon levels; these changes were associated with a reduction in hyperglycemia.

"The findings from the present study suggest that inhibition of α-cell INa could become an attractive drug target for combination with other classes of anti-diabetic agents," the authors write.

Explore further: Scientists identify third critical hormone in Type 2 diabetes

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Scientists identify third critical hormone in Type 2 diabetes

April 3, 2014
(Medical Xpress)—Working with mice and human blood and liver samples, scientists from the Johns Hopkins Children's Center have identified a previously unsuspected liver hormone as a critical player in the development of ...

Researchers make exciting discoveries in non-excitable cells

October 17, 2013
It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells—all of which are termed "excitable." Now researchers at Yale ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.