'Supermodel' mouse reveals mechanisms that regulate metabolism, researchers find

May 20, 2014
'Supermodel' mouse reveals mechanisms that regulate metabolism, researchers find
Dr. Bruce Beutler is a Professor of  Immunology at the University of Texas Southwestern Center for the Genetics of Host Defense. Credit: UT Southwestern

A lean "Supermodel" mouse type has revealed the potentially critical role played by a largely unknown gene that regulates metabolism, findings that could provide new insight into diseases ranging from diabetes to obesity, a new study by UT Southwestern Medical Center researchers suggests.

The Supermodel mouse's phenotype – the physical characteristics that result from its gene makeup – include being very small in size, with an unusual body form caused by abnormal distribution of fat, said Dr. Zhe Chen,  Assistant Professor of Biophysics, and Dr. Bruce Beutler, Professor of  Immunology, with UT Southwestern's Center for the Genetics of Host Defense. The mouse phenotype is nicknamed "Supermodel."

"This mouse is important because it has revealed a new regulatory protein that's very important for normal metabolism, but was never known to exist before," said Nobel Laureate Dr. Beutler, Director of the Center for the Genetics of Host Defense. "The implications of the work may be felt in diabetes and obesity research, the study of wasting in chronic disease, the study of muscle cell function, and perhaps other fields."

While at the Scripps Research Institute, Dr. Beutler developed a mouse mutagenesis program, which at UT Southwestern has become the largest and most technologically advanced in the world. The new mouse phenotype was discovered in the lab's colony of mutant mice several years ago, but the mutation was discovered and studied entirely at UT Southwestern, in a collaboration that also involved researchers Dr. William Holland, Assistant Professor of Internal Medicine, Dr. Aktar Ali, Assistant Professor of Internal Medicine, and John Shelton, lab manager in Internal Medicine. Together, they found that a mutation in a gene called Samd4, about which almost nothing was known in mammals, results in the abnormally lean mice, which also have diminished insulin responses to glucose and arginine.

"Whereas many heritable obesity phenotypes are known, lean phenotypes are comparatively uncommon. Yet they can reveal critical checkpoints regulating energy balance," the researchers said.

The mice seem to waste energy, consuming excessive oxygen and producing a commensurately higher amount of CO2, despite being relatively inactive. Much of the fat in these mice seems to be abnormal, similar to "brown fat" of hibernating species.

The findings, appearing in the Proceedings of the National Academy of Sciences, may be explained by the apparent involvement of Sterile alpha motif domain containing protein 4 (Samd4) in a specific cell signaling pathway, which tell cells how to interact, called mTORC1.  mTORC1 is a master regulatory complex that governs aspects of energy balance, including metabolism, development, autophagy (cell recycling), and other processes in cells.

Explore further: Breast cancer gene protects against obesity, diabetes

Related Stories

Breast cancer gene protects against obesity, diabetes

March 12, 2014
(Medical Xpress)—The gene known to be associated with breast cancer susceptibility, BRCA 1, plays a critical role in the normal metabolic function of skeletal muscle, according to a new study led by University of Maryland ...

Researchers identify gene that causes obesity-related metabolic syndrome

May 15, 2014
(Medical Xpress)—Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related "metabolic syndrome." The study appears in the May 15 issue ...

Oxygen diminishes the heart's ability to regenerate, researchers discover

April 24, 2014
Scientific research at UT Southwestern Medical Center previously discovered that the newborn animal heart can heal itself completely, whereas the adult heart lacks this ability. New research by the same team today has revealed ...

Manipulating molecules in the heart protects mice on high-fat diets from obesity, affects metabolism

April 26, 2012
April 26, 2012 – UT Southwestern Medical Center researchers have demonstrated for the first time that the heart can regulate energy balance throughout the body, a finding that may point to more effective treatments for ...

Cancer biologists link tumor suppressor gene to stem cells

March 26, 2014
Just as archeologists try to decipher ancient tablets to discern their meaning, UT Southwestern Medical Center cancer biologists are working to decode the purpose of an ancient gene considered one of the most important in ...

Researchers identify role for protein linked to obesity, type 2 diabetes

December 17, 2012
Researchers at UT Southwestern Medical Center have taken another step toward better understanding the metabolic functions of obesity and its connection to type 2 diabetes.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.