Researchers unlock how Ebola virus smashes into human cells

June 2, 2014 by Josh Barney
“Once you have visualized the molecular shape changes that these structures undergo upon cell entry, you can see what molecules or potential anti-viral drugs could interfere with this process,” U.Va. researcher Lukas Tamm, pictured above, said. “If you could find a molecule that throws a wrench into the gears of that mechanism, you could actually block that from happening.”

(Medical Xpress)—Researchers at the University of Virginia School of Medicine have discovered how the deadly Ebola virus punches its way into the cytoplasm of cells. The finding identifies an important target for blocking the infection process of this incurable disease that many fear may be used for bioterror.

Outbreaks of this extremely dangerous, highly contagious virus are now under way in the African countries of Guinea, Liberia and Sierra Leone. Ebola kills up to 90 percent of people who contract it. In addition to the toll on human life in the areas already affected, there is significant concern that it could spread elsewhere around the world, so finding ways to combat it is a global priority.

Understanding Ebola Infection

U.Va.'s new discovery offers important insight into how the virus works its way into . After the virus is engulfed by the cell, it is contained within a vesicle where it can do no harm. But Ebola quickly escapes the vesicle, and now scientists understand how. U.Va. researcher Lukas Tamm of the Department of Molecular Physiology and Biological Physics and his team discovered that the pH level inside the vesicle triggers the surface glycoprotein on the virus to form a "fist" that lets the virus punch its way into the cell's cytoplasm, where it can effectively turn the cell into a factory for .

"If it stayed in the vesicle, it would be not much of a problem. The cell could digest it," Tamm said. "But then it escapes from that internal vesicle into the body of the cell, and that's when the danger happens. It does that by fusing its own membrane with that cellular vesicle membrane, and that lets the RNA of the virus out into the cell to replicate, to basically cause havoc in those cells."

Unclenching the Fist

Ironically, when the virus approaches a cell, what becomes the fist looks more like an outstretched hand. The U.Va. research explains how the virus forms its fist and identifies amino acids within the virus critical for the clenching to occur. "If you lose those," Tamm said, "it would always be in the extended hand formation."

To test his findings, Tamm turned to the School of Medicine's Judith M. White, a researcher in the Department of Cell Biology who has developed -like particles that act like Ebola, but pose no danger in the laboratory. Working with those particles, they were able to verify Tamm's hypotheses about the fist-clenching process held true not just in test tubes, but in live cells. Then they took the work even further, enlisting Dr. Peter M. Kasson of the Department of Molecular Physiology and Biological Physics to create a computer model of that process. The result is a remarkable new understanding of Ebola infection.

"It's a very nice collaboration between structural, cell and computational biologists that shows how beneficial it is to have all these different areas of expertise here at U.Va., so that we can tell more of the whole story," Tamm said.

By understanding that story, researchers are a significant step closer to being able to stop Ebola – and perhaps other viruses with similar structures as well.

"Once you have visualized the molecular shape changes that these structures undergo upon cell entry, you can see what molecules or potential anti-viral drugs could interfere with this process," Tamm said. "You have these contacts that need to be made to make the clenching of the fist happen – if you could find a molecule that throws a wrench into the gears of that mechanism, you could actually block that from happening."

Discovery Detailed

The researchers have detailed the fist-clenching process in a paper published by the Journal of Virology. The article's authors are Sonia M. Gregory, Per Larsson, Elizabeth A. Nelson, Kasson, White and Tamm.

Explore further: FDA-approved medications may have unexpected use: Stopping deadly ebola

Related Stories

FDA-approved medications may have unexpected use: Stopping deadly ebola

June 25, 2013
A class of drugs that includes treatments for breast cancer and infertility appears able to inhibit the deadly, incurable Ebola virus, new research suggests.

Ebola toll rises to 74 in Guinea

April 29, 2014
Guinea said Tuesday 74 people had died so far this year in one of the worst ever outbreaks of the Ebola virus.

Scientists discover how Marburg virus grows in cells

March 13, 2014
A protein that normally protects cells from environmental stresses has been shown to interact Marburg virus VP24, allowing the deadly Marburg virus to live longer and replicate better, according to a cell culture study led ...

Guinea Ebola outbreak under control: foreign minister (Update)

April 14, 2014
Guinea's Foreign Minister Francois Fall said on Monday the west African country had brought the spread of the deadly Ebola virus under control after more than 100 people have died.

Recommended for you

Researchers developing new tool to distinguish between viral, bacterial infections

July 28, 2017
Antibiotics are lifesaving drugs, but overuse is leading to one of the world's most pressing health threats: antibiotic resistance. Researchers at the University of Rochester Medical Center are developing a tool to help physicians ...

Finish your antibiotics course? Maybe not, experts say

July 27, 2017
British disease experts on Thursday suggested doing away with the "incorrect" advice to always finish a course of antibiotics, saying the approach was fuelling the spread of drug resistance.

Co-infection with two common gut pathogens worsens malnutrition in mice

July 27, 2017
Two gut pathogens commonly found in malnourished children combine to worsen malnutrition and impair growth in laboratory mice, according to new research published in PLOS Pathogens.

Phase 3 trial confirms superiority of tocilizumab to steroids for giant cell arteritis

July 26, 2017
A phase 3 clinical trial has confirmed that regular treatment with tocilizumab, an inhibitor of interleukin-6, successfully reduced both symptoms of and the need for high-dose steroid treatment for giant cell arteritis, the ...

A large-scale 'germ trap' solution for hospitals

July 26, 2017
When an infectious airborne illness strikes, some hospitals use negative pressure rooms to isolate and treat patients. These rooms use ventilation controls to keep germ-filled air contained rather than letting it circulate ...

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.