Cutting edge methods reveal what makes Purkinje neurons unique

June 5, 2014

In a collaboration between RIKEN's Brain Science Institute and Center for Life Science Technologies in Japan, scientists combined cutting edge methods to obtain a comprehensive catalogue of proteins that are manufactured in specific parts of Purkinje neurons.

The study, headed by Drs. Thomas Launey, Unit Leader at RIKEN BSI and Charles Plessy, Unit Leader at RIKEN CLST, succeeded in identifying several thousand RNAs that are enriched in rat Purkinje . This comprehensive list holds the key to a better understanding of molecular events within these neurons and potential insights into diseases associated with Purkinje cells, like ataxias (disorders affecting movement) and autism.

"Purkinje neurons, remain one of most mysterious type of brain cell, receiving 10 times more connections than any other neuron and possessing structural characteristics that are unique among neurons," said Dr. Launey. These large neurons have a distinctive shape with extensively branched extensions called dendrites, which receive signals, and a single axon for sending signals to other neurons. Unlike other that act locally on their neighbors, the Purkinje cells shut off neurons that are located outside of the cerebellar cortex.

Drs. Anton Kratz and Pascal Beguin, the study's co-first authors, and colleagues identified not only what proteins distinguish Purkinje cells from other neurons, but also what proteins are made directly in the dendrites. Isolating the dendrites and examining their contents is challenging, and the researchers accomplished this technical feat using sophisticated methods.

Although all cells of the body have the same DNA, they make different proteins, which give them unique properties, depending on what parts of the genome are active. To make the proteins, messenger RNA (mRNA) carries information encoded in genes from the nucleus to the ribosomes, the -building machinery in the cytoplasm. By combining two high-throughput methods known as TRAP (Translating Ribosomal Affinity Purification) and CAGEscan (Cap Analysis of Gene Expression, developed at RIKEN), researchers could specifically capture and identify the mRNAs as they were being translated into proteins by ribosomes, in rat Purkinje neurons.

The TRAP method introduces a tag into the ribosome and the researchers used biochemical methods to purify the tagged ribosomes with the bound mRNA specifically from Purkinje cells, revealing what proteins are being manufactured. CAGEscan then allowed them to quickly sequence and identify the huge number of trapped mRNAs. Using microdissection to separate the cell body from the tree-like dendrites allowed the researchers to identify the proteins unique to each compartment. They found that there are many different kinds of proteins manufactured specifically in the dendrites that were distinct from the cell body.

This near-exhaustive survey of the molecular landscape allowed the researchers to find novel identifiers of Purkinje neurons and previously unknown mRNAs. "The introduction of new methods gave us access to mRNAs that are often difficult to detect, especially those that are in low abundance, but are functionally important, such as membrane receptors, transporters and ion channels," said Dr. Launey.

The methods used in this study should be widely applicable to other neuron types and other mammals, including primates, paving the way for comparative studies that may reveal the origins of complex cognitive abilities or the causal defects in diseases affecting the brain.

Explore further: The control of dendritic branching by mitochondria

Related Stories

The control of dendritic branching by mitochondria

May 22, 2014
(Medical Xpress)—A fundamental difference between neurons in real brains and those in artificial neural networks is the way the neurons in each are connected. In artificial nets, the synapses between neurons often have ...

Researchers profile active genes in neurons based on connections

May 23, 2014
(Medical Xpress)—When it comes to the brain, wiring isn't everything. Although neurobiologists often talk in electrical metaphors, the reality is that the brain is not nearly as simple as a series of wires and circuits. ...

Neurons coordinate to fine-tune motor control

February 28, 2014
Whether it is playing a piano sonata or acing a tennis serve, the brain needs to orchestrate precise, coordinated control over the body's many muscles. Moreover, there needs to be some kind of feedback from the senses should ...

New insights into control of neuronal circuitry could lead to treatments for an inherited motor disorder

September 20, 2013
The cerebellum is a region of the brain critical for balance, learning of motor skills and coordination of movements. In the outer layer of the cerebellum, individual 'Purkinje' cells integrate inputs from the brain stem ...

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.