Fecal transplants restore healthy bacteria and gut functions

June 17, 2014, American Society for Microbiology

Fecal microbiota transplantation—the process of delivering stool bacteria from a healthy donor to a patient suffering from intestinal infection with the bacterium Clostridium difficile—works by restoring healthy bacteria and functioning to the recipient's gut, according to a study published this week in mBio, the online open-access journal of the American Society for Microbiology.

The study provides insight into the structural and potential metabolic changes that occur following fecal transplant, says senior author Vincent B. Young, MD, PhD, an associate professor in the Department of Internal Medicine/Infectious Diseases and the Department of Microbiology & Immunology at the University of Michigan in Ann Arbor. The transplants, which have been successful at curing more than 90 percent of recipients, have been used successfully since the 1950s, he says, though it hasn't been clear how they work to recover gut function.

"The bottom line is fecal transplants work, and not by just supplying a missing bug but a missing function being carried out by multiple organisms in the transplanted feces," Young says. "By restoring this function, C. difficile isn't allowed to grow unchecked, and the whole ecosystem is able to recover."

Young and colleagues used DNA sequencing to study the composition and structure of fecal microbiota (bacteria) in stool samples from 14 patients before and two to four weeks after . In 10 of the patients, researchers also compared before and after transplant to samples from their donors. All , treated at the Essentia Health Duluth Clinic in Minnesota, had a history of at least two recurrent C. difficile infections following an initial infection and failed antibiotic therapy.

Studying families of bacteria in the samples, investigators found marked differences among donor, pre-transplant and post-transplant samples. However, those from the donors and post-transplant patients were most similar to each other, indicating that the transplants at least partially returned a diverse community of healthy to the recipients. While not as robust as their donors, the bacterial communities in patients after transplant showed a reduced amount of Proteobacteria, which include a variety of infectious agents, and an increased amount of Firmicutes and Bacteroidetes bacteria typically found in healthy individuals, compared to their pre-transplant status.

Then, using a predictive software tool, researchers analyzed the relationship between the community structure of the micoorganisms and their function, presumably involved in maintaining resistance against CDI.

They identified 75 metabolic/functional pathways prevalent in the samples. The samples taken from patients before transplant had decreased levels of several modules related to basic metabolism and production of chemicals like amino acids and carbohydrates, but were enriched in pathways associated with stress response, compared to donor samples or post-transplant samples.

CDI has significantly increased during the past decade, Young says, with previous studies estimating there are more than 500,000 cases of CDI in the United States annually, with health care costs ranging from $1.3 billion to $3.4 billion. Up to 40 percent of patients suffer from recurrence of disease following standard antibiotic treatment. In a healthy person, gut microorganisms limit infections but antibiotics are believed to disrupt the normal structure of these microoganisms, rendering the gut less able to prevent infection with C. difficile.

Further identification of the specific microorganisms and functions that promote resistance of bacterial colonization, or growth, may aid in the development of improved CDI treatments, Young says: "If we can understand the functions that are missing, we can identify supplemental bacteria or chemicals that could be given therapeutically to help restore proper gut function."

Explore further: Good bacteria armed with antibiotic resistance protect gut microbiome

Related Stories

Good bacteria armed with antibiotic resistance protect gut microbiome

June 12, 2014
Researchers from Case Western Reserve University in Cleveland have discovered that populating the gastrointestinal (GI) tracts of mice with Bacteroides species producing a specific enzyme helps protect the good commensal ...

Fecal transplant feasible for recurrent C. difficile infection

March 3, 2012
(HealthDay) -- Recurrent Clostridium difficile (C. difficile) infection (CDI) can successfully be treated in the vast majority of patients through a fecal transplantation procedure via colonoscopy, according to research published ...

Use of frozen material for fecal transplant successfully treats C. difficile infection

April 24, 2014
A pilot study by Massachusetts General Hospital (MGH) investigators may lead to greater availability and acceptability of an unusual treatment for a serious medical problem – use of fecal material from healthy donors to ...

Groundbreaking clinical trial looks at fecal transplant as treatment for C. difficile

August 21, 2012
For patients with Clostridium difficile (C. difficile), a persistent and potentially deadly bacterial illness, severe diarrhea, abdominal pain, nausea and vomiting are an everyday event. This particularly virulent infection ...

Toxigenic C. difficile resides harmlessly in infants, poses risk to adults

December 3, 2013
Infants and toddlers frequently carry toxigenic Clostridium difficile, usually with no harm to themselves, but can serve as a reservoir and spread the bacteria to adults in whom it can cause severe disease, according to a ...

Researchers suggest fecal transplants should be regulated as tissue not drug

February 20, 2014
(Medical Xpress)—A trio of researchers are suggesting in a Comment piece in the journal Nature, that the FDA should cease regulating fecal transplants as drugs and should instead begin treating them as tissue product procedures. ...

Recommended for you

New long-acting approach for malaria therapy developed

January 22, 2018
A new study, published in Nature Communications, conducted by the University of Liverpool and the Johns Hopkins University School of Medicine highlights a new 'long acting' medicine for the prevention of malaria.

Virus shown to be likely cause of mystery polio-like illness

January 22, 2018
A major review by UNSW researchers has identified strong evidence that a virus called Enterovirus D68 is the cause of a mystery polio-like illness that has paralysed children in the US, Canada and Europe.

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.