Genetics provide blueprint for new heart disease therapies

June 4, 2014

Advances in the understanding of the genetics of coronary artery disease, or CAD, will revitalize the field and lead to more therapeutic targets for new medicines to combat this common disease, suggests a genetics expert from the Perelman School of Medicine at the University of Pennsylvania in a Perspective article in the new issue of Science Translational Medicine.

Daniel J. Rader, MD, chair of the Department of Genetics and associate director of the Institute for Translational Medicine and Therapeutics, asserts that the lagging search for new heart medicines could be jump-started by a wide-angle hunt for relevant genetic variants in humans.

According the America Heart Association, the death rate from has fallen about 39 percent during the past 10-most-recent years for which statistics are available. Still, heart disease is the number-one cause of death in the United States, killing almost 380,000 people a year.

Although progress has been made in decreasing the risk of heart disease, with the single greatest contribution made by statins to reduce levels of low-density lipoprotein cholesterol (LDL-C) in millions of people, the burden of the disease remains high. "Despite this clear unmet need, however, many biopharmaceutical companies have begun to back away from efforts to discover and develop therapies for this prevalent disease," writes Rader, citing seven drugs that have failed in phase 3 clinical trials in the last three to five years.

The single biggest issue facing the development of new therapeutics for heart disease is confidence before expensive human trials are underway that the target of a new drug has a high probability of success in reducing disease. Animal models of atherosclerosis, however, have not proven reliable at predicting new therapies that are effective in humans. In contrast, Rader says, basing drug targets on human genetics can provide greater confidence that a therapeutic targeted to a particular pathway will show clinical benefit in reducing major cardiovascular events in people. As with recent successes in cancer immunotherapy, a targeted, personalized approach to developing new treatments has proved attractive to big pharma.

Human genetic data strongly support the concept that reducing LDL-C by any means is associated with a lower cardiovascular risk. This association is consistent with LDL-C being a causal factor in the development of cardiovascular disease. Indeed, the discovery that mutations in the gene PCSK9 reduce LDL-C and protect against CAD launched a major effort to develop inhibitors of PCSK9, which markedly reduce LDL-C and are in late-stage clinical development.

Similar genetic data for triglycerides were recently published, suggesting that specific proteins regulating this blood chemical might be viable therapeutic targets. On the other hand, human genetic data provide little support for raising high-density lipoprotein cholesterol (HDL-C) because genetic variants associated with increased HDL-C are not generally associated with decreased cardiovascular risk.

Although circulating biomarkers such as LDLs and triglycerides, commonly measured in standard blood lipid panels, are useful for guiding drug development programs focused on reducing CAD, Rader contends that many of the genetically validated targets for CAD will not have well-established circuiting biomarkers. "Some of the most interesting new targets for atherosclerotic cardiovascular disease are likely to come from genetic studies of common and rare variants, comparing individuals with early disease with those who are free of disease," says Rader.

He cites studies of common variants associated with CAD that have yielded nearly 50 discrete genetic loci genome-wide that are statistically significantly associated with CAD. Less than a third are associated with such traditional risk factors as LDL-C levels or blood pressure, leaving more than 30 loci with no association with traditional measureable risk factors.

Rader cites a 2011 Lancet study, performed in collaboration with Penn colleague Muredach P. Reilly, MBBCH, MSCE, associate professor of Medicine and Pharmacology, that identified a new locus, ADAMTS7, a gene already implicated in arthritis, which was associated with the risk of developing CAD.

ADAMTS7 is a metalloproteinase, an enzyme expressed in blood vessels. Rader suggests that if it could be shown that genetically reduced activity of ADAMTS7 protects against CAD, this would provide compelling support for the concept of pharmacologically inhibiting this enzyme: "Situations like this, in which loss-of function gene variants are associated with protection from CAD, are particularly compelling because they suggest that pharmacologic inhibition of those proteins might be expected to reduce risk."

The wealth of new genetic discoveries over the past several years, combined with additional ones likely to come, has provided potential new targets and has caught the attention of the biopharmaceutical industry, notes Rader. Indeed, the Accelerating Medicines Partnership, a partnership between the National Institutes of Health and 10 biopharmaceutical companies (Rader co-led the working group for type 2 diabetes), was recently formed to leverage human genetics to discover and validate new therapeutic targets.

Explore further: Heart disease without coronary plaque buildup linked to heart attack risk

More information: "New Therapies for Coronary Artery Disease: Genetics Provides a Blueprint," by D.J. Rader, Science Translational Medicine: stm.sciencemag.org/lookup/doi/ … scitranslmed.3008535

Related Stories

Heart disease without coronary plaque buildup linked to heart attack risk

June 4, 2014
Non-obstructive coronary artery disease was associated with a 28 to 44 percent increased risk of a major adverse cardiac event such as a heart attack or death, in a new study presented at the American Heart Association's ...

Gene variant reduces cholesterol by two mechanisms

July 2, 2012
High levels of low-density lipoprotein (LDL) cholesterol increases the risk for coronary heart disease.

Prostate cancer and blood lipids share genetic links

April 30, 2014
Numerous studies have suggested a relationship between cardiovascular disease risk factors and prostate cancer. A new study by researchers at the University of California, San Diego School of Medicine, with colleagues in ...

Largest coronary artery disease study shows evidence of link between inflammation and heart disease

December 3, 2012
The University of Ottawa Heart Institute (UOHI) participated in the largest genetic study of Coronary Artery Disease (CAD) to date. Researchers from the CARDIoGRAMplusC4D Consortium report the identification of 15 genetic ...

Researchers use genetic signals affecting lipid levels to probe heart disease risk

February 7, 2014
New genetic evidence strengthens the case that one well-known type of cholesterol is a likely suspect in causing heart disease, but also casts further doubt on the causal role played by another type. The findings may guide ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.