Omega-3 inhibits blood vessel growth in age-related macular degeneration

June 16, 2014, Massachusetts Eye and Ear Infirmary
This shows, from left: Kip Connor, Ph.D.; Lama Mulki, M.D.; Ryoji Yanai, Ph.D., M.D.; Henry Cousins; Philipp Gaissert Not pictured are: Harry Sweigard, Ph.D.; Aris Thanos, M.D.; Wenyi Cai, M.D. Credit: Mass. Eye and Ear

Age-related macular degeneration (AMD), which is characterized by choroidal neovascularization (CNV), or blood vessel growth, is the primary cause of blindness in elderly individuals of industrialized countries. The prevalence of the disease is projected to increase 50% by the year 2020. There is an urgent need for new pharmacological interventions for the treatment and prevention of AMD.

Researchers from Massachusetts Eye and Ear/Schepens Eye Research Institute, Harvard Medical School and other institutions have demonstrated for the first time that the omega (ω)-3 long-chain polyunsaturated (LCPUFAs), DHA and EPA, and their specific bioactive products derived from the cytochrome P450 (CYP) pathway, can influence choroidal neovascularization (CNV) and vascular leakage by modulating micro-environmental immune cell recruitment to the site of these lesions. Their findings will be published in PNAS Online Early Edition the week of June 16-20, 2014.

"These are the first results showing that omega (ω)-3 LCPUFAs and their CYP derived metabolites can regulate choroidal angiogenesis in vivo. The fact that this can be accomplished with physiologically relevant naturally occurring lipid metabolites is of significant clinical interest. Our findings not only show promising therapeutic potential for resolution of neovascular AMD, but also for other conditions or diseases that involve angiogenesis and inflammation, such as atherosclerosis and cancer," said Kip Connor, Ph.D., Assistant Professor in Ophthalmology at Harvard Medical School and senior author of the paper.

The omega (ω)-3 and ω-6 long-chain polyunsaturated fatty acids (LCPUFAs) are two classes of dietary lipids that are essential fatty acids and have opposing physiological effects. To evaluate the effect of LCPUFAs on CNV development, researchers fed mice one of three experimental diets beginning two weeks before CNV induction by laser photocoagulation. The experimental diets were enriched with either ω-3 or ω-6 LCPUFAs, or in the case of the control diet, devoid of the primary ω-3 or ω-6 LCPUFAs. The lesion size and vascular leakage were significantly smaller in animals fed with ω-3 LCPUFAs. To gain mechanistic insight into the effect of dietary ω-3 LCPUFAs on CNV regression, researchers analyzed the lipid profiles of these mice and identified endogenous CYP-generated metabolites. Specifically, 17,18-EEQ and 19,20-EDP, derived from the CYP-pathway were identified by liquid chromatography- mass spectrometry (LC–MS/MS) and found to confer protection. Systemic immune-cell recruitment and adhesion-molecule regulation were significantly dampened in mice receiving ω-3s. These findings provide a unique mechanism whereby specific CYP derived lipid metabolites regulate angiogenesis in a mouse model of AMD.

The researchers demonstrated that dietary supplementation of omega (ω)-3 long-chain (LCPUFAs) mediates choroidal neovessel regression in a well-characterized murine model of neovascular AMD. The cytochrome P450 (CYP) enzymes catalyze the epoxidation of these ω-3 LCPUFAs to form the eicosanoids 17,18-epoxyeicosatetraenoic acid (EEQ) and 19,20-epoxydocosapentaenoic acid (EDP), which were identified as key lipid mediators of disease resolution.

Their findings show promising therapeutic potential in AMD disease resolution.

"Given the prevalence of neovascular eye disease, the potential impact of this study is highly significant. We have identified unique endogenous lipid biometabolites that are able to inhibit pathologic retinal angiogenesis, a major driver of vision loss worldwide. It is our hope that future studies will allow us to develop specific therapeutics that harness this knowledge resulting in a greater visual outcome and quality of life for patients suffering from these sight-threatening diseases," said lead author Ryoji Yanai, M.D., Ph.D.

Explore further: Excess omega-3 fatty acids could lead to negative health effects

More information: Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1401191111

Related Stories

Excess omega-3 fatty acids could lead to negative health effects

October 28, 2013
A new review suggests that omega-3 fatty acids taken in excess could have unintended health consequences in certain situations, and that dietary standards based on the best available evidence need to be established.

Transgenic mice produce both omega-3 and omega-6 fatty acids on carbohydrate diet

May 16, 2014
Massachusetts General Hospital (MGH) investigators have developed a transgenic mouse that synthesizes both the omega-3 and omega-6 essential fatty acids within its tissues on a diet of carbohydrates or saturated fats. Called ...

Omega-3 fatty acids, xanthophylls don't cut CVD risk

March 21, 2014
(HealthDay)—Dietary supplementation with ω-3 polyunsaturated fatty acids or macular xanthophylls do not seem to reduce the risk of cardiovascular disease (CVD) in older adults with age-related macular degeneration, according ...

Supplementation of formula with LCPUFAs ups infant visual acuity

December 17, 2012
(HealthDay)—For infants, supplementation of formula with long-chain polyunsaturated fatty acids (LCPUFAs) correlates with improved visual acuity in the first year of life, according to research published online Dec. 17 ...

Recommended for you

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

Robots grow mini-organs from human stem cells

May 17, 2018
An automated system that uses robots has been designed to rapidly produce human mini-organs derived from stem cells. Researchers at the University of Washington School of Medicine in Seattle developed the new system.

Scientists uncover a new face of a famous protein, SWI2/SNF2 ATPase

May 17, 2018
A team of Texas A&M and Texas A&M AgriLife Research scientists now have a deeper understanding of a large switch/sucrose non-fermentable (SWI/SNF) protein complex that plays a pivotal role in plant and human gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.