Specific protein may help beta cells survive in type 1 diabetes

June 9, 2014 by Tara Burd

Researchers find therapeutic potential of MANF protein to reduce beta cell stress in type 1 diabetes.

In the healthy pancreas of someone without type 1 diabetes (T1D), the hormone insulin (essential for turning food into energy) is produced, stored, and released in a normal "factory-like" process within pancreatic in response to glucose in the diet. Early in the course of T1D, however, excessive or pathologic stress in beta cells compromises their ability to properly secrete insulin, triggering a cascade of events ultimately contributing to the beta cell death. Over the past several years, JDRF-funded researchers have found evidence that beta cell stress may play a role in the onset of T1D, and are exploring possible ways to stop it from occurring, thus potentially protecting beta cell health and maintaining normal beta cell function. In April, JDRF-funded researchers in Finland released new findings in the journal Cell Reports that add another piece to the puzzle of beta cell stress and T1D.

Led by Dr. Mart Saarma, Dr. Maria Lindahl, and Dr. Timo Otonkoski of the University of Helsinki, along with other investigators, the study showed that a protein called MANF (mesencephalic astrocyte-derived neurotrophic factor) may help protect beta cells from experiencing excessive or pathologic stress response. In the study, mice deficient in the protein developed rapid-onset of T1D due to a decrease in beta cell mass after birth. In contrast, overexpression of the MANF protein in mice resulted in increased beta cell regeneration and promoted beta cell survival in this mouse model of T1D. The study indicates that MANF protein may thwart beta cell stress, promoting the proliferation and survival of beta cells—information that could prove valuable in the translational development of beta cell survival therapies for humans with T1D in the future.

These findings come one year into a three-year research grant from JDRF to support the discovery and development of potential methods to protect and regenerate beta cells in people with T1D. Still, more research needs to be done in additional animal models of T1D, as one model alone does not precisely mimic the complex pathogenesis of T1D in humans. Additionally, preliminary findings will be validated with human beta cells. The growing knowledge of beta cell biology, thanks to studies like this one, helps to open multiple paths toward potentially preserving and restoring beta cell function in people with T1D.

Explore further: Researchers find beta cell stress could trigger the development of type 1 diabetes

More information: Paper: www.cell.com/cell-reports/pdf/ … 7%2814%2900201-0.pdf

Related Stories

Researchers find beta cell stress could trigger the development of type 1 diabetes

March 22, 2012
In type 1 diabetes (T1D), pancreatic beta cells die from a misguided autoimmune attack, but how and why that happens is still unclear. Now, JDRF-funded scientists from the Indiana University School of Medicine have found ...

Study shows roles of beta cells and the immune system in Type 1 diabetes

March 9, 2012
A new JDRF-funded study shows that many of the genes known to play a role in type 1 diabetes (T1D) are expressed in pancreatic beta cells, suggesting that the cell responsible for producing insulin may be playing a part in ...

Newly discovered mechanism suggests novel approach to prevent type 1 diabetes

November 13, 2013
New research led by Harvard School of Public Health (HSPH) demonstrates a disease mechanism in type 1 diabetes (T1D) that can be targeted using simple, naturally occurring molecules to help prevent the disease. The work highlights ...

No rebirth for insulin secreting pancreatic beta cells

April 24, 2013
Pancreatic beta cells store and release insulin, the hormone responsible for stimulating cells to convert glucose to energy. The number of beta cells in the pancreas increases in response to greater demand for insulin or ...

Researchers find new pathway connected to type 2 diabetes

March 19, 2014
Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Study identifies immune cells that promote growth of beta cells in type 1 diabetes

September 27, 2013
Joslin researchers have identified immune cells that promote growth of beta cells in type 1 diabetes. This study provides further evidence of a changed role for immune cells in type 1 diabetes pathology. The study appears ...

Recommended for you

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

Immune system killer cells increase risk of diabetes

July 6, 2017
More than half of the German population is obese. One effect of obesity is to chronically activate the immune system, placing it under continuous stress. Researchers in Jens Brüning's team at the Max-Planck-Institute for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.