Research unearths genetic risk factor for type 2 diabetes in Latin American populations

June 10, 2014
Credit: Darren Lewis/public domain

In the largest study of its kind published to date, an international team of researchers in Mexico and the United States has discovered a strong genetic risk factor for type 2 diabetes that primarily affects Latin American patients, but is rare elsewhere. The work further characterizes a gene called HNF1A, responsible for a rare, inherited form of diabetes against which a widely available and inexpensive class of drugs is highly effective. The discovery offers important new clues about the population genetics of type 2 diabetes in Latin American populations, and suggests the possibility of tailored treatments based on patients' genetic makeup. The study appears in the June 11 issue of the Journal of the American Medical Association (JAMA).

"We've identified a genetic risk factor that is present in roughly 2 percent of Mexicans with type 2 , and its effects are substantial—raising a person's risk of developing the disease five fold," said corresponding author, Jose Florez, a Broad Institute associate member, an associate professor of medicine at Harvard Medical School, and an assistant physician in the Diabetes Unit and the Center for Human Genetic Research at the Massachusetts General Hospital. "It's a striking finding, which really underscores the power of the genetic approach."

Although type 2 diabetes is a major public health problem across the globe, Latin American countries carry a disproportionately heavy burden. In Mexico, for example, it is estimated that the disease affects over 14 percent of adults, which is approximately twice the rate in Europeans or white Americans. A number of factors are thought to drive this increased prevalence, including environmental as well as genetic influences.

Several large-scale genomic studies have been conducted to identify the that contribute to type 2 diabetes. To date, more than 70 genomic regions have been implicated in the disease. However, the majority of these studies have focused on European populations, leaving a sizeable portion of the genomic landscape of the disease unexplored.

An international research team, known as the SIGMA Type 2 Diabetes Consortium, was formed to investigate the genetics of type 2 diabetes in Mexicans and other Latin American populations. In the current study, the team harnessed whole-exome sequencing, a method that decodes the genetic information within protein-coding genes—a relatively small portion of the genome called the "exome." Whole-exome sequencing has the potential to reveal even rare variations in the genetic code that are often not captured by other approaches but are more likely to affect protein function.

This work was conducted as part of the Slim Initiative for Genomic Medicine for the Americas (SIGMA), a joint U.S.-Mexico project funded by the Carlos Slim Foundation through the Carlos Slim Health Institute. SIGMA focuses on several key diseases with particular relevance to public health in Mexico and Latin America, including type 2 diabetes and cancer.

For the JAMA study, the researchers analyzed samples from nearly 4,000 participants, both people with type 2 diabetes and healthy controls, who were of Mexican or other Latin American ancestry. Their top results identified two genes: SLC16A11, which the team previously found to be linked with an increased risk of type 2 diabetes (findings published late last year in the journal Nature), and HNF1A.

The researchers uncovered a mutation within the HNF1A gene that is present in roughly 2 percent of Mexicans with type 2 diabetes, but in only one-tenth as many healthy adults, and is associated with a four- to five-fold increased risk of the disease. This variant of the gene has not been previously associated with the common form of type 2 diabetes, and is most frequently found in Latin American populations or other populations with Native American ancestry.

While the role of the variant is new, the HNF1A gene itself is well understood. When its function is fully disabled, a rare, inherited form of diabetes known as MODY results. MODY, or Maturity Onset Diabetes of the Young, generally emerges earlier than type 2 diabetes, often in the mid-twenties, and occurs even in the absence of pre-existing obesity.

In contrast, the HNF1A mutation identified in the current study, referred to as p.E508K, is thought to be less severe than those responsible for MODY, leaving some residual gene function intact. Patients with type 2 diabetes who carry this milder form are generally indistinguishable from other patients with type 2 diabetes in terms of age of onset and body weight.

These findings, while shedding new light on the population genetics of type 2 diabetes, raise some important questions about potential treatments—namely, whether drugs that preferentially work in patients with MODY will also work in patients with type 2 diabetes who carry the p.E508K variant. MODY that stems from HNF1A mutations is often successfully treated with a type of drug known as sulfonylurea because patients with MODY are much more sensitive to that drug than to metformin, the first-line drug typically prescribed in common type 2 diabetes.

"This is an outstanding discovery—one that helps explain the epidemic rates of in Latin American populations," said Teresa Tusie-Luna, project leader at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Principal Investigator at the Biomedical Research Institute, National University of Mexico. "But we must be mindful that, while the finding is associated with high levels of risk for the disease, we still do not know how the mutation behaves and if there is a specific therapeutic method can be safely applied in the clinic for individuals that carry the mutation. There is much more we need to learn."

Explore further: Study reveals new genetic risk factor for type 2 diabetes

More information: The SIGMA Type 2 Diabetes Genetics Consortium. "A low frequency variant in HNF1A has a large effect on type 2 diabetes risk in a Latino population." JAMA. June 11, 2014. doi:10.1001/jama.2014.6511

Related Stories

Study reveals new genetic risk factor for type 2 diabetes

December 25, 2013
An international team of researchers in Mexico and the United States has uncovered a new genetic clue that contributes to an increased risk of developing type 2 diabetes, particularly the elevated risk among Mexican and other ...

Lifestyle interventions are better than genetic tests for preventing type 2 diabetes

May 20, 2014
Targeted interventions based on genetic risk may not be the best approach for preventing type 2 diabetes and instead universal strategies to prevent obesity should be prioritized, according to new research published in this ...

Researchers identify fat-storage gene mutation that may increase diabetes risk

May 22, 2014
Researchers at the University of Maryland School of Medicine have identified a mutation in a fat-storage gene that appears to increase the risk for type 2 diabetes and other metabolic disorders, according to a study published ...

Seven new genetic regions linked to type 2 diabetes

February 9, 2014
Seven new genetic regions associated with type 2 diabetes have been identified in the largest study to date of the genetic basis of the disease.

Scientists find first human iPSC from patients with maturity onset diabetes of the young

January 31, 2013
Joslin scientists report the first generation of human induced pluripotent stem cells from patients with an uncommon form of diabetes, maturity onset diabetes of the young (MODY). These cells offer a powerful resource for ...

Cases question diagnostic criteria for inherited diabetes

May 9, 2013
(HealthDay)—Two patients diagnosed with a genetic form of non-insulin-dependent diabetes developed diabetic ketoacidosis years later, even though a history of diabetic ketoacidosis is normally an exclusion criterion for ...

Recommended for you

Diabetes can be tracked with our Google searches

July 26, 2017
The emergence of Type 2 Diabetes could be more effectively monitored using our Google searches—helping public health officials keep track of the disease and halt its spread—according to research by the University of Warwick.

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.