Vaccine made from complex of two malaria proteins protects mice from lethal infection

June 23, 2014, NIH/National Institute of Allergy and Infectious Diseases
Credit: CDC

An experimental vaccine designed to spur production of antibodies against a key malaria parasite protein, AMA1, was developed more than decade ago by scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. It showed promise in test-tube and animal experiments and in early-stage clinical trials, but returned disappointing results in recent human trials conducted in malaria-endemic countries.

Now, the NIAID scientists have improved on their original vaccine with a new candidate that delivers AMA1 protein together with part of a second parasite protein called RON2. In a natural infection, malaria parasites use the AMA1-RON2 complex to attach to and invade . When injected into mice as a complex, the AMA1-RON2 vaccine prompted robust antibody production and protected the animals from a lethal form of mouse malaria.

Moreover, when produced in response to AMA1-RON2 vaccine were administered to other, non-vaccinated mice, those animals received some protection from infection as well. Further analysis showed that the improved antibody response following AMA1-RON2 vaccination was due to an increased proportion of antibodies aimed directly at the AMA1-RON2 junction, which made them better at inhibiting parasite invasion.

The researchers note that this strategy of vaccination with the functional protein AMA1-RON2 complex could be tested in the next generation of human malaria vaccines. Such vaccines, which would contain multiple AMA1 sequences in complex with RON2, might induce antibodies targeted to a range of genetically diverse malaria parasites.

Explore further: Building a better malaria vaccine: Mixing the right cocktail

More information: P Srinivasan et al. Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1409928111 (2014).

Related Stories

Building a better malaria vaccine: Mixing the right cocktail

December 26, 2013
A safe and effective malaria vaccine is high on the wish list of most people concerned with global health. Results published on December 26 in PLOS Pathogens suggest how a leading vaccine candidate could be vastly improved.

A new target to inhibit malaria and toxoplasmosis infection

July 25, 2011
Maryse Lebrun, Research Director at Inserm, and her fellow researchers at the Laboratoire Dynamique des interactions membranaires normales et pathologiques (CNRS, France), have characterised a protein complex that allows ...

Malaria, toxoplasmosis: Toward new lines of research?

October 10, 2013
A study realized by teams from the Institut Pasteur, the Institut Cochin and the Wellcome Trust Centre for Molecular Parasitology of the University of Glasgow, could redefine part of the present lines of research toward a ...

Scientists identify potential vaccine candidate for pediatric malaria

May 22, 2014
Researchers have identified a substance, or antigen, that generates antibodies that can hinder the ability of malaria parasites to multiply, which may protect against severe malaria infection.

Multiple malaria vaccine offers protection to people most at risk

October 26, 2011
A new malaria vaccine could be the first to tackle different forms of the disease and help those most vulnerable to infection, a study suggests.

Malaria vaccine development paves way for protective therapy

February 18, 2014
Scientists have made a significant contribution towards the development of a vaccine to prevent malaria.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.