Virus kills triple negative breast cancer cells, tumor cells in mice

June 24, 2014, Pennsylvania State University

A virus not known to cause disease kills triple-negative breast cancer cells and killed tumors grown from these cells in mice, according to Penn State College of Medicine researchers. Understanding how the virus kills cancer may lead to new treatments for breast cancer.

Adeno-associated virus type 2 (AAV2) infects humans but is not known to cause sickness. In prior studies, the researchers tested the virus on a variety of breast cancers that represent degrees of aggressiveness and on human papillomavirus-positive cervical cancer cells. The virus initiated apoptosis—natural cell death—in cancer cells without affecting .

"Treatment of breast cancer remains difficult because there are multiple signaling pathways that promote tumor growth and develop resistance to treatment," said Craig Meyers, Ph.D., Distinguished Professor of Microbiology and Immunology.

Signaling pathways involve molecules in a cell that control cell functions—such as cell division—by cooperation. For example, the first molecule in the process receives a signal to begin. It then tells another molecule to work, and so on.

Treatment of breast cancer differs by patient due to differences in tumors. Some tumors contain protein receptors that are activated by the hormones estrogen or progesterone. Others respond to another protein called human epidermal growth factor receptor 2, or HER2. Each of these is treated differently.

A does not have any of these protein receptors and is typically aggressive.

"There is an urgent and ongoing need for the development of novel therapies which efficiently target triple-negative breast cancers," Meyers said.

In the current study, the researchers tested AAV2 on a cell-line representative of triple-negative breast cancer. The researchers report their results in Cancer Biology & Therapy.

The AAV2 killed 100 percent of the cells in the laboratory by activating proteins called caspases, which are essential for the cell's natural death. In addition, consistent with past studies, AAV2-infected cancer cells produced more Ki-67, an immunity system activating protein and c-Myc, a protein that helps both to increase cell growth and induce apoptosis. The cancer cell growth slowed by day 17 and all cells were dead by day 21. AAV2 mediated cell killing of multiple breast cancer cell lines representing both low and high grades of cancer and targeted the independent of hormone or growth factor classification.

The researchers then injected AAV2 into human cell line-derived tumors in without functioning immune systems. Mice that received AAV2 outlived the untreated mice and did not show signs of being sick, unlike the untreated mice. Tumor sizes decreased in the treated mice, areas of cell death were visible and all AAV2 treated mice survived through the study, a direct contrast to the untreated mice.

"These results are significant, since tumor necrosis—or death—in response to therapy is also used as the measure of an effective chemotherapeutic," Meyers said.

Future studies should look at the use of AAV2 body-wide in mice, which would better model what happens in humans, according to Meyers.

Explore further: Virus kills breast cancer cells in laboratory

Related Stories

Virus kills breast cancer cells in laboratory

September 22, 2011
A nondisease-causing virus kills human breast cancer cells in the laboratory, creating opportunities for potential new cancer therapies, according to Penn State College of Medicine researchers who tested the virus on three ...

Potential cholesterol lowering drug has breast cancer fighting capabilities

June 17, 2014
Researchers at the University of Missouri have proven that a compound initially developed as a cholesterol-fighting molecule not only halts the progression of breast cancer, but also can kill the cancerous cells.

Possible new weapon found for fighting some types of breast cancer

June 23, 2014
Researchers believe they have discovered one reason why some women with estrogen receptor-positive breast cancer may respond poorly or only temporarily to estrogen-blocking drugs such as tamoxifen. Results of a new study, ...

Signals found that recruit host animals' cells, enabling breast cancer metastasis

May 22, 2014
Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings ...

Stopping the spread of breast cancer

June 3, 2014
The primary cause of death from breast cancer is the spread of tumor cells from the breast to other organs in the body. Northwestern Medicine® scientists have discovered a new pathway that can stop breast cancer cells from ...

Drug shows promise for triple-negative breast cancer

July 3, 2012
(Medical Xpress) -- A promising new therapy for hard-to-treat triple-negative breast cancer has been reported in the journal Breast Cancer Research by a team at the Tulane University School of Medicine, led by Dr. Bridgette ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.