Anti-inflammatory drug can prevent neuron loss in Parkinson's model

July 25, 2014

An experimental anti-inflammatory drug can protect vulnerable neurons and reduce motor deficits in a rat model of Parkinson's disease, researchers at Emory University School of Medicine have shown.

The findings demonstrate that the drug, called XPro1595, can reach the brain at sufficient levels and have beneficial effects when administered by subcutaneous injection, like an insulin shot. Previous studies of XPro1595 in animals tested more invasive modes of delivery, such as direct injection into the brain.

"This is an important step forward for anti-inflammatory therapies for Parkinson's disease," says Malu Tansey, PhD, associate professor of physiology at Emory University School of Medicine. "Our results provide a compelling rationale for moving toward a clinical trial in early Parkinson's disease patients."

The new research on subcutaneous administration of XPro1595 was funded by the Michael J. Fox Foundation for Parkinson's Research (MJFF). XPro1595 is licensed by FPRT Bio, and is seeking funding for a clinical trial to test its efficacy in the early stages of Parkinson's disease.

"We are proud to have supported this work and glad to see positive pre-clinical results," said Marco Baptista, PhD, MJFF associate director of research programs. "A therapy that could slow Parkinson's progression would be a game changer for the millions living with this disease, and this study is a step in that direction."

In addition, Tansey and Yoland Smith, PhD, from Yerkes National Primate Research Center, were awarded a grant this week from the Parkinson's Disease Foundation to test XPro1595 in a non-human primate model of Parkinson's.

Evidence has been piling up that inflammation is an important mechanism driving the progression of Parkinson's disease. XPro1595 targets tumor necrosis factor (TNF), a critical inflammatory signaling molecule, and is specific to the soluble form of TNF. This specificity would avoid compromising immunity to infections, a known side effect of existing anti-TNF drugs used to treat disorders such as rheumatoid arthritis.

"Inflammation is probably not the initiating event in Parkinson's disease, but it is important for the neurodegeneration that follows," Tansey says. "That's why we believe that an anti-inflammatory agent, such as one that counteracts soluble TNF, could substantially slow the progression of the disease."

Postdoctoral fellow Christopher Barnum, PhD and colleagues used a model of Parkinson's disease in rats in which the neurotoxin 6-hydroxydopamine (6-OHDA) is injected into only one side of the brain. This reproduces some aspects of Parkinson's disease: neurons that produce dopamine in the injected side of the brain die, leading to impaired movement on the opposite side of the body.

When XPro1595 is given to the animals 3 days after 6-OHDA injection, just 15 percent of the dopamine-producing neurons were lost five weeks later. That compares to controls in which 55 percent of the same neurons were lost. By reducing dopamine neuron loss with XPro1595, the researchers were also able to reduce motor impairment. In fact, the degree of dopamine cell loss was highly correlated both with the degree of motor impairment and immune cell activation.

When XPro1595 is given two weeks after injection, 44 percent of the vulnerable neurons are still lost, suggesting that there is a limited window of opportunity to intervene.

"Recent clinical studies indicates there is a four or five year window between diagnosis of Parkinson's disease and the time when the maximum number of vulnerable neurons are lost," Dr. Tansey says. "If this is true, and if inflammation is playing a key role during this window, then we might be able to slow or halt the progression of Parkinson's with a treatment like XPro1595."

The results were published in the Journal of Parkinson's Disease.

Explore further: Moving toward improved cell replacement therapy for Parkinson's disease

Related Stories

Moving toward improved cell replacement therapy for Parkinson's disease

June 17, 2014
Parkinson's disease, which affects millions worldwide, results from neuron loss. Transplantation of fetal tissue to restore this loss has shown promise, but ethical concerns over acquiring this tissue limit its use.

New treatment targeting versatile protein may protect brain cells in Parkinson's disease

May 16, 2014
In Parkinson's disease (PD), dopamine-producing nerve cells that control our movements waste away. Current treatments for PD therefore aim at restoring dopamine contents in the brain. In a new study from Lund University, ...

Research shows that a human protein may trigger the Parkinson's disease

April 9, 2014
A research led by the Research Institute Vall d'Hebron (VHIR), in which the University of Valencia participated, has shown that pathological forms of the α-synuclein protein present in deceased patients with Parkinson's ...

Hunting down the trigger for Parkinson's: Failing dopamine pump damages brain cells

June 16, 2014
A study group at the Medical University of Vienna's Centre for Brain Research has investigated the function of an intracellular dopamine pump in Parkinson's patients compared to a healthy test group. It turned out that this ...

Boost for dopamine packaging protects brain in Parkinson's model

June 17, 2014
Researchers from Emory's Rollins School of Public Health discovered that an increase in the protein that helps store dopamine, a critical brain chemical, led to enhanced dopamine neurotransmission and protection from a Parkinson's ...

Cinnamon may be used to halt the progression of Parkinson's disease

July 9, 2014
Neurological scientists at Rush University Medical Center have found that using cinnamon, a common food spice and flavoring material, can reverse the biomechanical, cellular and anatomical changes that occur in the brains ...

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.