Genomic differences between individuals can change the physical organization of RNA transcripts

July 2, 2014
Genomic differences between individuals can change the physical organization of RNA transcripts
Single-nucleotide differences in genomic sequence between two individuals, such as the substitution of guanine (G) with adenine (A), can considerably alter the structure of the resulting mRNA transcript. Credit: Genome Institute of Singapore

The information contained within a messenger RNA (mRNA) transcript goes beyond the protein recipe embedded in its sequence. mRNAs consist of single strands of nucleotides that can pair with each other in the same way as double-stranded DNA molecules. The resulting 'secondary structures' help determine when and how the encoded protein gets produced.

Researchers led by Yue Wan of the A*STAR Genome Institute of Singapore and Howard Chang of Stanford University in the United States have applied a powerful experimental technique to build a detailed map of secondary structures for the entire human mRNA 'transcriptome'.

Their Parallel Analysis of RNA Structure (PARS) method entails isolating the total mRNA content of a biological sample, then treating it with two different enzymes that selectively cut single- or double-stranded RNA segments. By using sequencing technology to map these cut sites, the researchers could chart the secondary structure of each mRNA transcript.

The analysis uncovered some interesting general features of mRNA structure. For example, protein-coding regions had less structure than noncoding regulatory sequences, particularly in segments involved in splicing—an enzymatic process that expands the number of proteins encoded by a single transcript. Additionally, nearly 10 per cent of the mRNAs the team examined assumed multiple secondary structure arrangements, suggesting that 'switching' between conformations plays an important regulatory role.

The researchers also investigated instances where mRNA structure is affected by differences in the genomic DNA sequence from which it was transcribed. "There is extensive genetic variation between individuals," explains Wan. "To understand the extent to which this causes structural alterations in humans, we performed a genome-wide analysis in a family of three individuals." This showed that seemingly minor differences can have a considerable impact: roughly 15 per cent of the single-nucleotide sequence variations between individuals caused structural changes in an mRNA (see image).

Although other researchers predicted that genome sequence differences would have such an effect, Wan's findings represent the first direct demonstration of the extent of this phenomenon. "We identified over 1,900 nucleotide variants that cause structural changes in the human transcriptome—far more than anybody else has discovered previously," he says.

In several instances, the researchers found evidence that these variant-associated changes may impact gene regulation, including protein production, and therefore contribute to certain disease states. "This work was done on healthy individuals, but our findings suggest that some mutations may cause disease by altering gene regulation," says Wan. "Future work could compare diseased with normal tissues to identify and characterize -changing mutations."

Explore further: New mechanism in the regulation of human genes

More information: Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O. et al. "Landscape and variation of RNA secondary structure across the human transcriptome." Nature 505, 706–709 (2014). dx.doi.org/10.1038/nature12946

Related Stories

New mechanism in the regulation of human genes

July 14, 2011
Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

A protein complex for the long haul

November 18, 2013
A multiprotein complex called TREX plays a key role in expression of the genetic information. Moreover, as a new study demonstrates – the longer the gene, the greater the need for TREX function.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.