A protein complex for the long haul

November 18, 2013

A multiprotein complex called TREX plays a key role in expression of the genetic information. Moreover, as a new study demonstrates – the longer the gene, the greater the need for TREX function.

In higher organisms, the , written in the nucleotide sequences of the hereditary material DNA, is stored in the cell's nucleus. The selective conversion of this information into the set of proteins required to carry out the biochemical functions of each cell is a highly , multistep process. First, the DNA sequence that specifies the structure and function of each protein is transcribed into molecules of messenger RNA (mRNA) by the enzyme RNA polymerase II (RNAPII), a process called transcription. These transcripts undergo various modifications before being exported from the nucleus to the surrounding cytoplasm. A protein complex named TREX functions in transcription and mRNA export and couples these two processes. In doing so, it interacts with the transcription machinery and recruits mRNA exporter proteins to the mRNA that transport the mRNAs to the cytoplasm.

"That TREX is recruited to the DNA has been known for a long time. But how the complex gets there has been unclear," says Katja Strässer, a biochemist at LMU's Gene Center. The function of the TREX complex is one focus of Strässer's research, who was already involved in the original discovery of the TREX complex. In their latest study, Strässer and colleagues set out to identify the sites to which TREX binds in the genome of baker's yeast (Saccharomyces cerevisiae). The team soon noted that the amount of TREX bound increased with the length of the gene. "And that suggested to us how TREX might be recruited to active genes," says Dominik Meinel, first author of the new paper.

Further experiments showed that TREX binds directly to RNAPII, specifically to the so-called C-terminal domain (CTD) of its largest subunit. This segment of RNAP II is known to act as a binding surface for a range of proteins are be recruited to the site of transcription to "work" on the mRNA. However, to their surprise, the LMU researchers found that TREX is recruited to the CTD by a previously unknown mechanism. "As transcription proceeds, more and more TREX interacts with the CTD – in other words, the longer the gene, the more TREX is attached to RNAPII. The increase in bound TREX with the length of the growing transcript turns out to be important for an adequate amount of long transcripts," Strässer explains.

This implies that TREX is important for the correct expression of the genome. By binding simultaneously to both RNAPII and the growing RNA, the complex presumably helps the cell to keep long mRNAs in the vicinity of the CTD – to which proteins involved in the processing of nascent transcripts also bind. "This finding adds a new facet to our understanding of how the many steps from mRNA synthesis to the export of the mature mRNA are coordinated. These functional links probably help ensure that only correctly transcribed and processed mRNAs are used for protein synthesis. We now want to investigate whether TREX functions as a gatekeeper in this context," Strässer says.

More information: Meinel DM, Burkert-Kautzsch C, Kieser A, O'Duibhir E, Siebert M, et al. (2013) Recruitment of TREX to the Transcription Machinery by Its Direct Binding to the Phospho-CTD of RNA Polymerase II. PLoS Genet 9(11): e1003914. DOI: 10.1371/journal.pgen.1003914

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.