Study compares structures of Huntington's disease protein

July 16, 2014, Oak Ridge National Laboratory
ORNL, UTGSM study compares structures of Huntington's disease protein
Researchers used neutron scattering experiments to clarify structural differences between the normal (left) and pathological (right) forms of huntingtin protein aggregates. The pathological form of this protein is implicated in Huntington's disease. Credit: ORNL

Neutron scattering research at the Department of Energy's Oak Ridge National Laboratory has revealed clear structural differences in the normal and pathological forms of a protein involved in Huntington's disease.

Huntington's disease, an incurable neurodegenerative disorder, starts as a genetic mutation that leads to an overabundance of "huntingtin" fragments, which form clumps in the brain.

Valerie Berthelier of the University of Tennessee Graduate School of Medicine, who co-led the study published in Biophysical Journal with ORNL's Chris Stanley, said the goal was to establish a baseline understanding of huntingtin's structure in order to eventually determine the true structural basis of Huntington's disease.

"This is a very first step—the hope is that we do this basic research to shed light on the structures of the protein," Berthelier said. "If we can start identifying any of these structures as toxic or potentially toxic, and then think about how drugs could interact with them, then we might be getting to the point of rationally designing therapeutics that would target those specific structures."

The researchers conducted a side-by-side study of model protein systems in solution using a time-resolved small-angle neutron scattering technique at ORNL's High Flux Isotope Reactor. The use of neutrons, a non-damaging but highly penetrating particle, allowed the team to study the biological materials over time without degrading the samples' structural integrity.

"We compared the normal and disease versions of the protein to see how they change over time," Stanley said. "You can see there's a discrepancy all the way from the early stages to the end-state fibrils."

The study's results showed key differences in the ways mutant and normal huntingtin proteins take shape. The disease protein, for instance, initially forms aggregates of one to two peptides, whereas the normal version makes bigger aggregates, gathering seven or eight peptides together.

These data on the very early stages of protein aggregate formation support a growing focus of the research in the amyloid field. Amyloid disorders, such as Parkinson's, Alzheimer's and Huntington's, all involve protein aggregation phenomena leading to a disease.

"There is no strong correlation between neuronal cell loss and the amount of protein aggregates found in the brain," Stanley said. "You could have a case with a lot of aggregates but minimal symptoms—and you can find the converse. Researchers think there must be something happening at the earliest stage that's giving rise to toxicity."

Stanley says the team hopes to continue its research to obtain higher-resolution structural data and refine their understanding of the .

"We'd like to use this small-angle neutron scattering technique in combination with others to get a better idea for how these early structures are forming and also ask the question—are they toxic or not?" Stanley said.

Explore further: Neutrons provide first sub-nanoscale snapshots of Huntington's disease protein

Related Stories

Neutrons provide first sub-nanoscale snapshots of Huntington's disease protein

May 18, 2011
Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee have for the first time successfully characterized the earliest structural formation of the disease type of the protein ...

Huntington's disease: Hot on the trail of misfolded proteins' toxic modus operandi

February 19, 2014
Proteins are the workhorses of the cell, and their correctly folded three-dimensional structures are critical to cellular functions. Misfolded structures often fail to properly perform these vital jobs, leading to cellular ...

Fatal cellular malfunction identified in Huntington's disease

June 23, 2014
Researchers believe they have learned how mutations in the gene that causes Huntington's disease kill brain cells, a finding that could open new opportunities for treating the fatal disorder. Scientists first linked the gene ...

Fighting Alzheimer's disease with protein origami

July 12, 2013
Alzheimer's disease is a progressive degenerative brain disease most commonly characterized by memory deficits. Loss of memory function, in particular, is known to be caused by neuronal damage arising from the misfolding ...

Huntington's disease protein helps wire the young brain

July 8, 2014
The protein that is mutated in Huntington's disease is critical for wiring the brain in early life, according to a new Duke University study.

Protein clusters implicated in neurodegenerative diseases actually serve to protect brain cells

April 23, 2014
People diagnosed with Huntington's disease, most in their mid-thirties and forties, face a devastating prognosis: complete mental, physical, and behavioral decline within two decades. "Mutant" protein clusters, long blamed ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.