Schizophrenia's genetic architecture revealed (w/ Video)

July 23, 2014 by Darius Koreis
Schizophrenia's genetic architecture revealed
Professor Bryan Mowry from UQ’s Queensland Brain Institute.

Queensland scientists are closer to effective treatments for schizophrenia after uncovering dozens of sites across the human genome that are strongly associated with a genetic predisposition to schizophrenia.

The study, published in internationally prestigious Nature magazine, involved University of Queensland's Professor Bryan Mowry, who said it was the world's largest molecular genetic study into a psychiatric disorder.

Professor Mowry, from UQ's Queensland Brain Institute and the Queensland Centre for Mental Health Research, said the study found 108 sites, 83 of which were previously unidentified, that formed the genetic underpinnings of .

"This provides the potential for understanding the causes of the illness and for discovering new treatments," he said.

He said these locations were not randomly distributed across the genome but converged upon genes that were expressed in certain tissues, particularly the brain and in tissues with important immune functions.

"These are very exciting findings that will no doubt bring hope to the quarter of a million Australians who have schizophrenia and to their families and carers," Professor Mowry said.

"This study constitutes a rapid advance in our understanding of the genetic architecture of schizophrenia, opening the door to expanding our understanding of its underlying biology."

The video will load shortly

Schizophrenia is a highly-inheritable, debilitating psychiatric disorder that affects about one in every 100 people worldwide, and is characterised by hallucinations, disturbed beliefs and a breakdown of thought processes.

It is ranked ninth in the global burden of illness and is estimated to cost Australian society $5 billion a year.

Professor Mowry said that despite the huge cost to individuals and to society, it was only in the past five years that substantial progress had been made.

"Many of these findings implicate genes that are involved in transmitting signals from one neuron to another, opening up potential therapeutic avenues," he said.

"Interestingly, by far the strongest genetic finding links schizophrenia to a region previously identified in autoimmune diseases, implying the possibility of an autoimmune pathology in the disease, and is one that warrants further investigation."

Using DNA samples from 36,989 , researchers used a genome-wide association study to find genetic variations between the patients and 113,075 control samples.

"A huge international effort was made to increase sample size, because, although previous studies had indicated a small number of genetic signals, sample sizes weren't large enough to confirm definite genetic associations," Professor Mowry said.

"By screening the DNA of people with schizophrenia and those without it at millions of DNA markers across the , we were able to determine which markers were statistically significantly associated with this disorder.

"The next steps will involve determining the functional basis of these genetic signals and how they interact together to cause illness, and then develop new therapeutic interventions."

UQ partnered with more than 200 organisations in the Schizophrenia Working Group of the Psychiatric Genomics Consortium, including researchers from QBI, QCMHR and the Royal Brisbane and Women's Hospital Department of Psychiatry.

The paper is titled Biological Insights From 108 Schizophrenia-Associated Genetic Loci.

Explore further: Immunity, signaling genes may be linked to schizophrenia

More information: "Biological insights from 108 schizophrenia-associated genetic loci." Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature (2014) DOI: 10.1038/nature13595. Received 06 March 2014 Accepted 18 June 2014 Published online 22 July 2014

Related Stories

Immunity, signaling genes may be linked to schizophrenia

July 23, 2014
The secret to schizophrenia, psychiatry's most abiding mystery, may lie in the DNA associated with the body's immune system, according to a genome-wide study published online Tuesday.

Schizophrenia's genetic 'skyline' rising: Suspect common variants soar from 30 to 108

July 21, 2014
The largest genomic dragnet of any psychiatric disorder to date has unmasked 108 chromosomal sites harboring inherited variations in the genetic code linked to schizophrenia, 83 of which had not been previously reported. ...

Schizophrenia and cannabis use may share common genes

June 24, 2014
Genes that increase the risk of developing schizophrenia may also increase the likelihood of using cannabis, according to a new study led by King's College London, published today in Molecular Psychiatry.

Gene variant linked to schizophrenia, bipolar disorder and alcoholism

July 22, 2014
A rare gene variant discovered by UCL (University College London) scientists is associated with an increased risk of developing schizophrenia, bipolar disorder and alcoholism, confirms new research.

Research shows a genetic overlap in schizophrenia and cognitive ability

December 17, 2013
Investigators at The Feinstein Institute for Medical Research have discovered for the first time, direct evidence of a genetic overlap between schizophrenia and general cognitive ability. The findings are published online ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.