In search for Alzheimer's drug, a major STEP forward

August 5, 2014

Researchers at Yale School of Medicine have discovered a new drug compound that reverses the brain deficits of Alzheimer's disease in an animal model. Their findings are published in the Aug. 5 issue of the journal PLoS Biology.

The compound, TC-2153, inhibits the negative effects of a protein called STtriatal-Enriched tyrosine Phosphatase (STEP), which is key to regulating learning and memory. These cognitive functions are impaired in Alzheimer's.

"Decreasing STEP levels reversed the effects of Alzheimer's disease in mice," said lead author Paul Lombroso, M.D., professor in the Yale Child Study Center and in the Departments of Neurobiology and Psychiatry at Yale School of Medicine.

Lombroso and co-authors studied thousands of small molecules, searching for those that would inhibit STEP activity. Once identified, those STEP-inhibiting were tested in brain cells to examine how effectively they could halt the effects of STEP. They examined the most promising compound in a mouse model of Alzheimer's disease, and found a reversal of deficits in several cognitive exercises that gauged the animals' ability to remember previously seen objects.

High levels of STEP proteins keep synapses in the brain from strengthening. Synaptic strengthening is a process that is required for people to turn short-term memories into long-term memories. When STEP is elevated in the brain, it depletes receptors from synaptic sites, and inactivates other proteins that are necessary for proper cognitive function. This disruption can result in Alzheimer's disease or a number of neuropsychiatric and neurodegenerative disorders, all marked by cognitive deficits.

"The small molecule inhibitor is the result of a five-year collaborative effort to search for STEP inhibitors," said Lombroso. "A single dose of the drug results in improved cognitive function in mice. Animals treated with TC compound were indistinguishable from a control group in several cognitive tasks."

The team is currently testing the TC compound in other animals with cognitive defects, including rats and non-human primates. "These studies will determine whether the compound can improve cognitive deficits in other animal models," said Lombroso. "Successful results will bring us a step closer to testing a drug that improves cognition in humans."

Explore further: Neuroscientists find that limiting a certain protein in the brain reverses Alzheimer's symptoms in mice

More information: Xu J, Chatterjee M, Baguley TD, Brouillette J, Kurup P, et al. (2014) Inhibitor of the Tyrosine Phosphatase STEP Reverses Cognitive Deficits in a Mouse Model of Alzheimer's Disease. PLoS Biol 12(8): e1001923. DOI: 10.1371/journal.pbio.1001923

Related Stories

Neuroscientists find that limiting a certain protein in the brain reverses Alzheimer's symptoms in mice

April 15, 2014
Limiting a certain protein in the brain reverses Alzheimer's symptoms in mice, report neuroscientists at MIT's Picower Intitute for Learning and Memory.

Transplantation of new brain cells reverses memory loss in Alzheimer's disease model

July 16, 2014
A new study from the Gladstone Institutes has revealed a way to alleviate the learning and memory deficits caused by apoE4, the most important genetic risk factor for Alzheimer's disease, improving cognition to normal levels ...

New amyloid-reducing compound could be a preventive measure against Alzheimer's

June 3, 2014
Scientists at NYU Langone Medical Center have identified a compound, called 2-PMAP, in animal studies that reduced by more than half levels of amyloid proteins in the brain associated with Alzheimer's disease. The researchers ...

Compound reverses symptoms of Alzheimer's disease in mice, research shows

May 20, 2014
A molecular compound developed by Saint Louis University scientists restored learning, memory and appropriate behavior in a mouse model of Alzheimer's disease, according to findings in the May issue of the Journal of Alzheimer's ...

Novel protein fragments may protect against Alzheimer's

May 13, 2014
The devastating loss of memory and consciousness in Alzheimer's disease is caused by plaque accumulations and tangles in neurons, which kill brain cells. Alzheimer's research has centered on trying to understand the pathology ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

Bacteria found in Alzheimer's brains

July 17, 2017
Researchers in the UK have used DNA sequencing to examine bacteria in post-mortem brains from patients with Alzheimer's disease. Their findings suggest increased bacterial populations and different proportions of specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.