New gene technique identifies previously hidden causes of brain malformation

August 20, 2014

Howard Hughes Medical Institute (HHMI) scientists have developed a strategy for finding disease-causing mutations that lurk in only a small fraction of the body's cells. Such mutations can cause significant problems, but cannot be detected with traditional methods of genetic testing, as well as newer, more costly genome sequencing technologies.

The scientists report in the August 21, 2014, issue of the New England Journal of Medicine, that they used the technique to find disease-causing mutations in with whose genetic causes were unknown despite previous testing.

By sequencing hundreds of copies of the genes in a panel of candidate genes, scientists led by HHMI investigator Christopher A. Walsh identified somatic mutations – gene mutations present in some, but nor all, cells – in more than a quarter of patients that could be successfully diagnosed genetically. Walsh and his colleagues, including Saumya Jamuar, a clinical fellow in Walsh's lab at Boston Children's Hospital who is now at the KK Women's and Children's Hospital in Singapore and Timothy Yu, also at Boston Children's Hospital, were authors of the study.

Walsh says his team was surprised to discover so many somatic mutations in patients who had already undergone . "This tells us just how poorly other methods perform in detecting somatic mutations," he says. "You're not going to find these things unless you go looking for them – unless you have a clinical test that is set up to detect them in a sensitive way."

Somatic mutations are not inherited from parents, but instead, arise sometime after fertilization. They are most often seen in some forms of cancer, in which genetic differences between tumor cells and the rest of the body drive tumor growth and metastasis. But they've been implicated in other diseases, as well.

"Somatic mutations have been discovered to cause milder forms of a wide range of diseases, especially neuropsychiatric ones," Walsh says, citing as examples Rett syndrome and tuberous sclerosis, two disorders that cause seizures and intellectual disability. In his own lab, he had found that some of his patients with double cortex syndrome, a brain malformation that can cause some of the same kinds of neurological problems, have somatic mutations. And in a new study published August 21, 2014, in Cell Reports, Walsh's team analyzed the genomes of individual cells in healthy and diseased brains and found that large segments of DNA had been duplicated or deleted in most cells. "No neuron's genome is pristine," he says. "There's a lot of variability, and some of these mutations have occurred at a stage where they're present in more than one cell."

"We think these somatic mutations are probably more common as causes of intellectual disability, and maybe even some psychiatric conditions, than people have generally realized." Walsh says. "It's really time to start investigating that systematically."

He decided to begin with his own patients. A genetic diagnosis is important for counseling patients and their parents about risks to future children, and can, in some cases, influence treatment decisions. But many patients who had come to Walsh's lab with neurodevelopmental problems were still without answers. "We'd successfully identified causative mutations in many families. But there remained a subset where—even after 10 or more years of searching—we had been unable to identify the causative genes. This made us wonder whether there might be certain kinds of mutations not well discovered by present methods," he says. Walsh's team questioned whether it had missed somatic mutations in those patients by using traditional methods of genetic testing? It seemed possible. Those techniques are not designed to find mutations that occur only in a small fraction of cells, Walsh says. "Even if you are looking at the right gene, you can still miss the mutation."

Most diagnostic gene testing is done by sequencing specific genes using a traditional DNA sequencing technique known as the Sanger method. When this strategy fails, the search for mutations is sometimes broadened to all of the protein-coding regions of the genome – the exome – or further, to the entire genome. Both approaches have limitations, Walsh says.

"Whole-exome sequencing tends to sample the genome about 30 or 50 times over," he explains. "But if a mutation is only in five or 10 percent of the cells, then it's only going to be in a very small fraction of the data, and it's hard to separate from the noise. The same is true of Sanger sequencing: it has not been optimized to detect a mutation that's present in a small fraction of the reads."

To find the kinds of mutations they were looking for, Walsh's team knew they would have to deepen their search. They devised a strategy in which they would use next-generation sequencing technology to sequence a panel of genes known or suspected to be associated with brain malformations. "We said we'd shoot to sequence them a thousand times over," Walsh says. "Even if a mutation is only present in five percent of the cells, it will be obvious that it's a mutation, because we'll see that mutation 50 times."

Jamuar set up a test to screen blood samples from 158 patients whose brain malformations remained unexplained. For each patient, a panel of 14 or 54 genes (depending on the patient's condition) was sequenced hundreds or thousands of times. The design of the panel and sequencing took about 2-3 months to carry out. He then fine-tuned existing bioinformatics algorithms to search for somatic mutations in the sequences. Though the initial sequencing was fast, follow-up validation of potential somatic mutations took additional months because it remains labor-intensive.

In this way, the team uncovered mutations likely to cause disease – either because their role was already known or because they disrupted protein function—in 27 of the 158 patients in their study. Eight of these were somatic mutations, present in just five to 35 percent of the sequenced DNA. Jamuar confirmed these sequencing findings with laboratory experiments in which the patients' DNA was replicated in bacterial cells and analyzed by Sanger sequencing.

"We have a genetic diagnosis. This ends the diagnostic odyssey for these eight individuals," says Jamuar.

Five of the eight somatic mutations that they identified would never have been found with traditional sequencing methods, the scientists say. "All of the mutations that were present at less than about 15 percent of the reads were completely undetectable by Sanger sequencing," Walsh says. "One of them had been missed by whole-exome sequencing, as well."

"The gold standard of clinical diagnosis is Sanger sequencing," Jamuar adds. "But you're missing a big chunk of patients with mutations in these genes, because you are using a test that's not designed to look for them."

Now that they have demonstrated their method's sensitivity in detecting , Walsh and Jamuar say medical geneticists should consider using the approach before turning to more costly whole-exome sequencing. Neither offers a single solution for all patients, but their complementary strengths give geneticists a more complete set of tools. "Look deep, and you may find the answer," says Jamuar.

Explore further: Next generation sequencing shakes up genotype/phenotype correlation, disease discoveries

Related Stories

Next generation sequencing shakes up genotype/phenotype correlation, disease discoveries

August 13, 2014
With the ability to use next generation sequencing technology, researchers have a broadened understanding of the association of genetic changes and disease causation to a much greater resolution, driving new discoveries, ...

SDSC resources, expertise used in genomic analysis of 115 year-old woman

April 30, 2014
A team of researchers investigating the genome of a healthy supercentenarian since 2011 has found many somatic mutations – permanent changes in cells other than reproductive ones – that arose during the woman's lifetime. ...

ASH: CALR mutations ID'd in myeloproliferative neoplasms

December 10, 2013
(HealthDay)—Many patients with myeloproliferative neoplasms without mutations in the Janus kinase 2 gene (JAK2) or in the thrombopoietin receptor gene (MPL) have mutations in the CALR gene encoding calreticulin, according ...

BROCA sequencing approach evaluates all 24 genes implicated in breast cancer

October 24, 2013
Since 1994, many thousands of women with breast cancer from families severely affected with the disease have been tested for inherited mutations in BRCA1 and BRCA2. The vast majority of those patients were told that their ...

Hundreds of genetic mutations found in healthy blood of a supercentenarian

April 23, 2014
Genetic mutations are commonly studied because of links to diseases such as cancer; however, little is known about mutations occurring in healthy individuals. In a study published online in Genome Research, researchers detected ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.