Study shows that mice can identify specific odors amid complex olfactory environments

August 3, 2014
Credit: Martha Sexton/public domain

For many animals, making sense of the clutter of sensory stimuli is often a matter or literal life or death.

Exactly how animals separate objects of interest, such as food sources or the scent of predators, from background information, however, remains largely unknown. Even the extent to which animals can make such distinctions, and how differences between scents might affect the process were largely a mystery – until now.

A new study, described in an August 3 paper in Nature Neuroscience, a team of researchers led by Venkatesh Murthy, Professor of Molecular and Cellular Biology, showed that while can be trained to detect specific odorants embedded in random mixtures, their performance drops steadily with increasing background components. The team included Dan Rokni, Vikrant Kapoor and Vivian Hemmelder, all from Harvard University.

"There is a continuous stream of information constantly arriving at our senses, coming from many different sources," Murthy said. "The classic example would be a – though it may be noisy, and there may be many people talking, we are able to focus our attention on one person, while ignoring the background noise.

"Is the same also true for smells?" he continued. "We are bombarded with many smells all jumbled up. Can we pick out one smell "object" – the smell of jasmine, for example, amidst a riot of other smells? Our experience tells us indeed we can, but how do we pick out the ones that we need to pay attention to, and what are the limitations?"

To find answers to those, and other, questions, Murthy and colleagues turned to mice.

After training mice to detect specific scents, researchers presented the animals with a combination of smells – sometimes including the "target" scent, sometimes not. Though previous studies had suggested animals are poor at individual smells, and instead perceived the mixture as a single smell, their findings showed that mice were able to identify when a target scent was present with 85 percent accuracy or better.

"Although the mice do well overall, they perform progressively poorer when the number of background odors increases," Murthy explained.

Understanding why, however, meant first overcoming a problem particular to olfaction.

While the relationship between visual stimuli is relatively easy to understand – differences in color can be easily described as differences in the wavelength of light – no such system exists to describe how two odors relate to each other. Instead, the researchers sought to describe scents according to how they activated neurons in the brain.

Using fluorescent proteins, they created images that show how each of 14 different odors stimulated neurons in the olfactory bulb. What they found, Murthy said, was that the ability of mice to identify a particular smell was markedly diminished if background smells activated the same neurons as the target odor.

"Each odor gives rise to a particular spatial pattern of neural responses," Murthy said. "When the spatial pattern of the background odors overlapped with the target , the mice did much more poorly at detecting the target. Therefore, the difficulty of picking out a particular smell among a jumble of other odors, depends on how much the background interferes with your target smell. So, we were able to give a neural explanation for how well you can solve the cocktail party problem.

"This study is interesting because it first shows that smells are not always perceived as one whole object – they can be broken down into their pieces," he added. "This is perhaps not a surprise – there are in fact coffee or wine specialists that can detect faint whiffs of particular elements within the complex mixture of flavors in each coffee or wine. But by doing these studies in mice, we can now get a better understanding of how the brain does this. One can also imagine that understanding how this is done may also allow us to build artificial olfactory systems that can detect specific chemicals in the air that are buried amidst a plethora of other odors."

Explore further: Memory accuracy and strength can be manipulated during sleep

More information: An olfactory cocktail party: figure-ground segregation of odorants in rodents, DOI: 10.1038/nn.3775

Related Stories

Memory accuracy and strength can be manipulated during sleep

April 8, 2014
The sense of smell might seem intuitive, almost something you take for granted. But researchers from NYU Langone Medical Center have found that memory of specific odors depends on the ability of the brain to learn, process ...

Animals learn to fine-tune their sniffs

October 30, 2012
Animals use their noses to focus their sense of smell, much the same way that humans focus their eyes, new research at the University of Chicago shows.

Sniffing out danger: Scientists say fearful memories can trigger heightened sense of smell

December 12, 2013
Most people – including scientists – assumed we can't just sniff out danger.

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

Memory takes time, researchers conclude

July 19, 2017
How short-term memories become long-term ones has frequently been explored by researchers. While a definitive answer remains elusive, New York University scientists Thomas Carew and Nikolay Kukushkin conclude that this transformation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.