New hope in fight against muscular dystrophy

August 22, 2014
Human heart muscle cells stained with antibodies sow dystrophin as unstained muscle.

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

An international team that includes KTH researchers Christina Al-Khalili Szigyarto and Mathias Uhlén report that they discovered how to create a variant of dystrophin that can mitigate . This could in turn lead to the development of new therapies for muscular dystrophy.

The research was published this month in Nature Medicine.

Duchenne muscular dystrophy results from a lack, or impaired function, of the protein dystrophin, a major component of muscles. Dystrophin plays a significant role in, among other things, cardiovascular functioning.

The causes a progressive degeneration process of the muscles, resulting in decreased mobility, breathing problems, heart failure and, ultimately, a premature death.

Uhlén, a professor of microbiology at KTH, says the research team demonstrated the presence of so-called native and truncated dystrophin with the help of HPA antibodies in muscle.

"Then the protein is run through a gel, extracted and sequenced by mass spectrometry," Uhlén says. "The resulting sequences of the native and the truncated dystrophin protein have been compared on the level of amino acid.

"We have been able to demonstrate that in comparison with healthy people, the patients in the study manufacture a shorter version of the despite a severe mutation in the dystrophin gene."

Explore further: Discovery one step closer to treatment for Duchenne muscular dystrophy

More information: Nicolas Wein, Adeline Vulin, Maria S Falzarano, Christina Al-Khalili Szigyarto, Baijayanta Maiti, Andrew Findlay, Kristin N Heller, Mathias Uhlén, Baskar Bakthavachalu, Messina, Giuseppe Vita, Chiara Passarelli, Francesca Gualandi, Steve Wilton, Louise R Rodino-Klapac, Lin Yang, Diane M Dunn, Daniel R Schoenberg, Robert B Weiss, Michael T Howard, Alessandra Ferlini & Kevin M Flanigan, "Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice," Nature Medicine (2014) DOI: 10.1038/nm.3628, Received 31 January 2014 Accepted 05 June 2014 Published online 10 August 2014

Related Stories

Discovery one step closer to treatment for Duchenne muscular dystrophy

July 30, 2013
(Medical Xpress)—A University of Alberta researcher has pinpointed a mutation that brings the medical community another step closer to treating those who suffer from a fatal type of muscular dystrophy. 

Researchers find link to failing heart in muscular dystrophy

June 26, 2014
(Medical Xpress)—In a world first, researchers at The University of Western Australia have discovered a communication breakdown may be responsible for causing heart failure in people with muscular dystrophy.

Discovery of new form of dystrophin protein could lead to therapy for some DMD patients

August 10, 2014
Scientists have discovered a new form of dystrophin, a protein critical to normal muscle function, and identified the genetic mechanism responsible for its production. Studies of the new protein isoform, published online ...

Another muscular dystrophy mystery solved; MU scientists inch closer to a therapy for patients

December 7, 2012
Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri ...

Promoting muscle regeneration in a mouse model of muscular dystrophy

April 1, 2013
Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the protein dystrophin. Dystrophin functions to protect muscle cells from injury and loss of functional dystrophin results ...

A quantum leap in gene therapy of Duchenne muscular dystrophy

January 15, 2013
Usually, results from a new study help scientists inch their way toward an answer whether they are battling a health problem or are on the verge of a technological breakthrough. Once in a while, those results give them a ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.