Stem cells reveal how illness-linked genetic variation affects neurons

August 17, 2014, Johns Hopkins University School of Medicine
Stem cells reveal how illness-linked genetic variation affects neurons
In this image, cell nuclei are shown in blue and synapses in red and green. Credit: Zhexing Wen/Johns Hopkins Medicine

A genetic variation linked to schizophrenia, bipolar disorder and severe depression wreaks havoc on connections among neurons in the developing brain, a team of researchers reports. The study, led by Guo-li Ming, M.D., Ph.D., and Hongjun Song, Ph.D., of the Johns Hopkins University School of Medicine and described online Aug. 17 in the journal Nature, used stem cells generated from people with and without mental illness to observe the effects of a rare and pernicious genetic variation on young brain cells. The results add to evidence that several major mental illnesses have common roots in faulty "wiring" during early brain development.

"This was the next best thing to going back in time to see what happened while a person was in the womb to later cause mental illness," says Ming. "We found the most convincing evidence yet that the answer lies in the synapses that connect brain cells to one another."

Previous evidence for the relationship came from autopsies and from studies suggesting that some genetic variants that affect synapses also increase the chance of mental illness. But those studies could not show a direct cause-and-effect relationship, Ming says.

One difficulty in studying the genetics of common is that they are generally caused by environmental factors in combination with multiple gene variants, any one of which usually could not by itself cause disease. A rare exception is the gene known as disrupted in schizophrenia 1 (DISC1), in which some mutations have a strong effect. Two families have been found in which many members with the DISC1 mutations have mental illness.

To find out how a DISC1 variation with a few deleted DNA "letters" affects the developing brain, the research team collected skin cells from a mother and daughter in one of these families who have neither the variation nor mental illness, as well as the father, who has the variation and , and another daughter, who carries the variation and has schizophrenia. For comparison, they also collected samples from an unrelated healthy person. Postdoctoral fellow Zhexing Wen, Ph.D., coaxed the to form five lines of and to mature into very pure populations of synapse-forming neurons.

Human neurons firing. Credit: Zhexing Wen/Johns Hopkins Medicine

After growing the neurons in a dish for six weeks, collaborators at Pennsylvania State University measured their electrical activity and found that neurons with the DISC1 variation had about half the number of synapses as those without the variation. To make sure that the differences were really due to the DISC1 variation and not to other genetic differences, graduate student Ha Nam Nguyen spent two years making targeted genetic changes to three of the stem cell lines.

In one of the cell lines with the variation, he swapped out the DISC1 gene for a healthy version. He also inserted the disease-causing variation into one healthy cell line from a family member, as well as the cell line from the unrelated control. Sure enough, the researchers report, the cells without the variation now grew the normal amount of synapses, while those with the inserted mutation had half as many.

"We had our definitive answer to whether this DISC1 variation is responsible for the reduced synapse growth," Ming says.

To find out how DISC1 acts on synapses, the researchers also compared the activity levels of genes in the healthy neurons to those with the variation. To their surprise, the activities of more than 100 genes were different. "This is the first indication that DISC1 regulates the activity of a large number of genes, many of which are related to ," Ming says.

The research team is now looking more closely at other genes that are linked to mental disorders. By better understanding the roots of mental illness, they hope to eventually develop better treatments for it, Ming says.

Explore further: Schizophrenia-associated gene variation affects brain cell development

More information: Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim N-S, Yoon K-J, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang C-H, Yoritomo N, Kaibuchi K, Zou J, Christian KM, Cheng L, Ross CA, Margolis RL, Chen G, Kosik KS, Song H, Ming G-l. Synaptic dysregulation in a human iPS cell model of major mental disorders. Nature, Aug. 17, 2014. DOI: 10.1038/nature13716

Related Stories

Schizophrenia-associated gene variation affects brain cell development

July 3, 2014
Johns Hopkins researchers have begun to connect the dots between a schizophrenia-linked genetic variation and its effect on the developing brain. As they report July 3 in the journal Cell Stem Cell, their experiments show ...

Schizophrenia: Small genetic changes pose risk for disease

December 16, 2011
(Medical Xpress) -- Carrying single DNA letter changes from two different genes together may increase the risk of developing schizophrenia, Johns Hopkins researchers reported in the November 16 issue of Neuron.

Genetic risk, stressful early infancy join to increase risk for schizophrenia

March 26, 2012
Working with genetically engineered mice and the genomes of thousands of people with schizophrenia, researchers at Johns Hopkins say they now better understand how both nature and nurture can affect one’s risks for schizophrenia ...

SIGNAL found to enhance survival of new brain cells

November 11, 2013
A specialized type of brain cell that tamps down stem cell activity ironically, perhaps, encourages the survival of the stem cells' progeny, Johns Hopkins researchers report. Understanding how these new brain cells "decide" ...

Researchers link two biological risk factors for schizophrenia

July 17, 2012
(Medical Xpress) -- Johns Hopkins researchers say they have discovered a cause-and-effect relationship between two well-established biological risk factors for schizophrenia previously believed to be independent of one another.

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.