Stimuli-responsive drug delivery system prevents transplant rejection

August 13, 2014, Brigham and Women's Hospital
Stimuli-responsive drug delivery system prevents transplant rejection
In a depiction of a hand transplant, researchers illustrate how injecting a hydrogel-drug combo beneath the skin results in a controlled release of immunosuppressant drug to prevent rejection of the transplanted limb. Credit: Praveen Kumar Vemula, Ph.D.

Following a tissue graft transplant—such as that of the face, hand, arm or leg—it is standard for doctors to immediately give transplant recipients immunosuppressant drugs to prevent their body's immune system from rejecting and attacking the new body part. However, there are toxicities associated with delivering these drugs systemically, as well as side effects since suppressing the immune system can make a patient vulnerable to infection.

A global collaboration including researchers from Brigham and Women's Hospital (BWH); Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India; and University Hospital of Bern, Switzerland, have developed a way to deliver immunosupressant drugs locally and when prompted, with the use of a biomaterial that self-assembles into a hydrogel (jello-like) material. The novel system is able to deliver targeted, controlled release of medication where and when it is needed.

The study is published online August 13, 2014 in Science Translational Medicine.

"This new approach to delivering immunosuppressant therapy suggests that local delivery of the drug to the grafted tissue has benefits in reducing toxicity, as well as markedly improving therapeutic outcomes, and may lead to a paradigm shift in clinical immunosuppressive therapy in transplant surgery," said Jeff Karp, PhD, Division of Biomedical Engineering, BWH Department of Medicine, co-corresponding study author.

Added Robert Rieben, PhD, associate professor of Transplantation Immunology, Department of Clinical Research, University of Bern, co-corresponding study author: "Continuous release of the drugs irrespective of disease severity is a hallmark of existing drug delivery vehicles and could be a thing of the past. Inflammation-directed drug release offers 'judicious use of locally injected drug' that extends the release for months while eliminating systemic toxicity. "

The researchers developed a hydrogel loaded with the immunosuppressant drug tacrolimus. The hydrogel-drug combo is injected under the skin after transplant surgery. The hydrogel remains inactive until it detects an inflammation/immune response from the transplant site, at which point it delivers the immunosuppressant drug for months locally within the transplanted graft.

In pre-clinical studies conducted by the researchers, a one-time, local injection of the hydrogel-drug combo prevented graft rejection for more than 100 days compared to 35.5 days for recipients receiving only tacrolimus and 11 days for recipients without treatment or only receiving hydrogel.

The innovation may also be applied in medical situations outside of .

"This safe, controlled release platform approach functions for over three months from a single injection, and that has broad implications," said Karp. "Nearly every disease has an inflammatory component. Thus we believe the materials we have developed could be used for localized treatment of multiple inflammatory diseases."

Added Praveen Kumar Vemula, PhD, co-corresponding study author: "This approach should also improve patient compliance, as it obviates the need for daily medications. Also, we plan to expand this prototype for the treatment of numerous diseases such as psoriasis, arthritis and cancer." Vemula, now affiliated with the Institute for Stem Cell Biology and Regenerative Medicine in Bangalore, India, developed the hydrogel with Karp while a postdoc in the Karp laboratory.

Explore further: Nontoxic hydrogel for breast cancer treatment

More information: "A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft," by T. Gajanayake et al. stm.sciencemag.org/lookup/doi/ … scitranslmed.3008778

Related Stories

Nontoxic hydrogel for breast cancer treatment

December 4, 2013
A nontoxic hydrogel developed by the A*STAR Institute of Bioengineering and Nanotechnology and IBM Research offers a new way forward for breast cancer therapeutics.

Irradiation and stem cells used in new treatment to enable kidney recipients to forego immunosuppressant drugs

March 8, 2012
With a novel approach that creates a more-accepting immune system, Stanford School of Medicine physicians have pioneered a technique that frees kidney-transplant recipients from a life on anti-rejection drugs.

Researchers seek to tackle transplant tolerance using patients' own T cells

June 30, 2014
A new Northwestern Medicine clinical trial aims to remove the need for organ transplant patients to take immunosuppressive drugs by increasing the number of their own regulatory T cells (T-regs). The first-in-human, Phase ...

Adults stop anti-rejection drugs after stem-cell transplant reverses sickle cell disease

July 1, 2014
Adults stop anti-rejection drugs after stem-cell transplant reverses sickle cell disease NIH trial success suggests a new treatment option for older, sicker patients

Recommended for you

Scientists emulate the human blood-retinal barrier on a microfluidic chip

January 24, 2018
For some years, scientists have been seeking ways to reduce animal testing and accelerate clinical trials. In vitro assays with living cells are an alternative, but have limitations, as the interconnection and interaction ...

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.