Researchers develop strategy to combat genetic ALS, FTD

August 14, 2014

A team of researchers at Mayo Clinic and The Scripps Research Institute in Florida have developed a new therapeutic strategy to combat the most common genetic risk factor for the neurodegenerative disorders amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) and frontotemporal dementia (FTD). In the Aug. 14 issue of Neuron, they also report discovery of a potential biomarker to track disease progression and the efficacy of therapies.

The scientists developed a small-molecule drug compound to prevent abnormal cellular processes caused by a mutation in the C9ORF72 gene. The findings come on the heels of previous discoveries by Mayo investigators that the C9ORF72 mutation produces an unusual repetitive genetic sequence that causes the buildup of abnormal RNA in brain cells and spinal cord.

While toxic protein clumps have long been implicated in neurodegeneration, this new strategy takes aim at abnormal RNA, which forms before toxic proteins in C9ORF72-related disorders (c9FTD/ALS). "Our study shows that toxic RNA produced in people with the c9FTD/ALS mutation is indeed a viable drug target," says the study's co-senior investigator, Leonard Petrucelli, Ph.D., a molecular neuroscientist at Mayo Clinic in Florida.

The compound, which was tested in cell culture models of c9FTD/ALS, bound to and blocked RNA's ability to interact with other key proteins, thereby preventing the formation of toxic RNA clumps and "c9RAN proteins" that results from a process called repeat-associated non-ATG (RAN) translation.

The researchers also discovered that c9RAN proteins produced by the abnormal RNA can be measured in the spinal fluid of ALS patients. They are now evaluating whether these proteins are also present in spinal fluid of patients diagnosed with FTD. Although ALS primarily affects motor neurons leading to impaired mobility, speech, swallowing, and respiratory function and FTD affects brain regions that support higher cognitive function, some patients have symptoms of both disorders.

"Development of a readily accessible biomarker for the c9FTD/ALS mutation may aid not only diagnosis of these disorders and allow for tracking disease course in patients, but it could provide a more direct way to evaluate the response to experimental treatments," says co-author Kevin Boylan, M.D., medical director of the Mayo Jacksonville ALS Center, the only ALS Certified Center of Excellence in Florida.

For example, a decrease in the levels of c9RAN proteins in response to treatment would suggest that a drug is having a desired effect. "The potential of this biomarker discovery is very exciting—even if we are in early days of development of such a test," he says.

Since ALS is usually fatal two to five years after diagnosis and there is currently no effective treatment for FTD, these landmark findings offer the possibility of both improved diagnosis and treatment for up to 40 percent of all patients with familial (inherited) ALS and up to 25 percent of patients with familial FTD, says Dr. Boylan.

"One of the most exciting aspects of these studies has, in my opinion, been the seamless collaboration of our Florida biosciences institutes—Scripps and Mayo. Our collective biological and chemical expertise made this research possible," says the other co-senior investigator, Mathew Disney, Ph.D., a professor of chemistry at Scripps Florida.

Dr. Disney and his group studied the structure of the RNA that resulted from the C9ORF72 mutation, and then designed the lead small-molecules. The Mayo team developed the patient-derived cell models to test the compounds in. Both teams then worked together to show that the lead agent's mode of action was targeting the toxic RNA.

Explore further: Identification of abnormal protein may help diagnose, treat ALS and frontotemporal dementia

More information: Neuron, Su et al.: "Biomarker and lead small molecule discovery to target r(GGGGCC)-associated defects in c9FTD/ALS." www.cell.com/neuron/abstract/S0896-6273(14)00673-4

Related Stories

Identification of abnormal protein may help diagnose, treat ALS and frontotemporal dementia

February 12, 2013
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective treatment. Researchers are beginning to recognize ALS and FTD as ...

'RNA sponge' mechanism may cause ALS/FTD neurodegeneration

April 1, 2013
The most common genetic cause of both ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia) was recently identified as an alteration in the gene C9orf72. But how the mutation causes neurodegenerative disease ...

Researchers identify new gene mutation associated with ALS

April 1, 2014
A research team led by investigators at the National Institute on Aging at the National Institutes of Health has discovered a new gene mutation associated with ALS, amyotrophic lateral sclerosis. The mutation is involved ...

ALS-linked gene causes disease by changing genetic material's shape

March 5, 2014
Johns Hopkins researchers say they have found one way that a recently discovered genetic mutation might cause two nasty nervous system diseases. While the affected gene may build up toxic RNA and not make enough protein, ...

Protein test is first to predict rate of progression in Lou Gehrig's disease

November 19, 2012
(Medical Xpress)—A novel test that measures proteins from nerve damage that are deposited in blood and spinal fluid reveals the rate of progression of amyotrophic lateral sclerosis (ALS) in patients, according to researchers ...

Silent RNAs express themselves in ALS disease

December 2, 2013
RNA molecules, used by cells to make proteins, are generally thought to be "silent" when stowed in cytoplasmic granules. But a protein mutated in some ALS patients forms granules that permit translation of stored RNAs, according ...

Recommended for you

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.