Researchers identify new gene mutation associated with ALS

April 1, 2014 by Barbara Cire, National Institutes of Health

A research team led by investigators at the National Institute on Aging at the National Institutes of Health has discovered a new gene mutation associated with ALS, amyotrophic lateral sclerosis. The mutation is involved in RNA metabolism, which is part of the control mechanism determining protein synthesis. The findings appear in the March 30, 2014, issue of Nature Neuroscience.

ALS, often referred to as Lou Gehrig's disease, is a rapidly progressive, fatal neurological disorder that kills about 6,000 Americans each year. The disease attacks and kills nerve cells in the brain and spinal cord, and people with ALS lose strength and the ability to move their arms, legs, and body, and eventually, the ability to breathe without support. About 10 percent of people with ALS have a directly inherited form of the disease.

The discovery involves a mutation in the Matrin 3 gene, located on chromosome 5. The researchers applied exome sequencing to DNA samples from families in which several people had been diagnosed with ALS and identified the Matrin 3 mutation in a number of individuals. Further investigation revealed an interaction between the Matrin 3 protein and the TDP-43 protein, an RNA-binding protein whose mutation is known to cause ALS.

"The identification of this gene mutation gives us another target to explore in the pathogenesis of this disease," said senior author Bryan J. Traynor, M.D, Ph.D., of NIA's Laboratory of Neurogenetics. "It also provides additional evidence that some disruption in RNA metabolism, an essential process within all cells, is involved in neuron death in ALS."

Explore further: Mechanism discovered for how amyotrophic lateral sclerosis mutations damage nerve function

More information: "Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis" by Johnson, J.O., et al. Nature Neuroscience. Published online on March 30, 2014. DOI: 10.1038/nn.3688

Related Stories

Mechanism discovered for how amyotrophic lateral sclerosis mutations damage nerve function

February 5, 2014
St. Jude Children's Research Hospital scientists led a study showing that mutations in a gene responsible for amyotrophic lateral sclerosis (ALS) disrupt the RNA transport system in nerve cells. The findings appear in the ...

ALS-linked gene causes disease by changing genetic material's shape

March 5, 2014
Johns Hopkins researchers say they have found one way that a recently discovered genetic mutation might cause two nasty nervous system diseases. While the affected gene may build up toxic RNA and not make enough protein, ...

Researchers identify new genetic mutation for ALS

January 15, 2013
Researchers at Western University in London, Canada, have identified a new genetic mutation for amyotrophic lateral sclerosis (ALS), opening the door to future targeted therapies. Dr. Michael Strong, a scientist with Western's ...

Silent RNAs express themselves in ALS disease

December 2, 2013
RNA molecules, used by cells to make proteins, are generally thought to be "silent" when stowed in cytoplasmic granules. But a protein mutated in some ALS patients forms granules that permit translation of stored RNAs, according ...

Experimental stroke drug also shows promise for people with Lou Gehrig's disease

March 3, 2014
Keck School of Medicine of USC neuroscientists have unlocked a piece of the puzzle in the fight against Lou Gehrig's disease, a debilitating neurological disorder that robs people of their motor skills. Their findings appear ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.